Optimizing Vehicular Networks with Variational Quantum Circuits-based Reinforcement Learning
- URL: http://arxiv.org/abs/2405.18984v1
- Date: Wed, 29 May 2024 10:57:25 GMT
- Title: Optimizing Vehicular Networks with Variational Quantum Circuits-based Reinforcement Learning
- Authors: Zijiang Yan, Ramsundar Tanikella, Hina Tabassum,
- Abstract summary: We develop a Variational Quantum Circuit (VQC)-based multi-objective reinforcement learning (MORL) framework to characterize efficient network selection and autonomous driving policies in a vehicular network (VNet)
Numerical results showcase notable enhancements in both convergence rates and rewards when compared to conventional deep-Q networks (DQNs)
- Score: 10.964841612918539
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In vehicular networks (VNets), ensuring both road safety and dependable network connectivity is of utmost importance. Achieving this necessitates the creation of resilient and efficient decision-making policies that prioritize multiple objectives. In this paper, we develop a Variational Quantum Circuit (VQC)-based multi-objective reinforcement learning (MORL) framework to characterize efficient network selection and autonomous driving policies in a vehicular network (VNet). Numerical results showcase notable enhancements in both convergence rates and rewards when compared to conventional deep-Q networks (DQNs), validating the efficacy of the VQC-MORL solution.
Related papers
- Adaptive Genetic Selection based Pinning Control with Asymmetric Coupling for Multi-Network Heterogeneous Vehicular Systems [8.454856509502733]
This paper proposes an optimized pinning control approach for heterogeneous multi-network vehicular ad-hoc networks (VANETs)
We first establish a rigorous theoretical foundation by proving the stability of pinning control strategies under both single and multi-network conditions.
Building on this theoretical groundwork, we propose an adaptive genetic algorithm tailored to select optimal pinning nodes.
arXiv Detail & Related papers (2024-11-05T11:49:26Z) - Spectrum Sharing using Deep Reinforcement Learning in Vehicular Networks [0.14999444543328289]
The paper presents a few results and analyses, demonstrating the efficacy of the DQN model in enhancing spectrum sharing efficiency.
Both SARL and MARL models have exhibited successful rates of V2V communication, with the cumulative reward of the RL model reaching its maximum as training progresses.
arXiv Detail & Related papers (2024-10-16T12:59:59Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Generalized Multi-Objective Reinforcement Learning with Envelope Updates in URLLC-enabled Vehicular Networks [12.323383132739195]
We develop a novel multi-objective reinforcement learning framework to jointly optimize wireless network selection and autonomous driving policies.
The proposed framework is designed to maximize the traffic flow and minimize collisions by controlling the vehicle's motion dynamics.
The proposed policies enable autonomous vehicles to adopt safe driving behaviors with improved connectivity.
arXiv Detail & Related papers (2024-05-18T16:31:32Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
Vehicle-to-Infrastructure (V2I) communication is becoming critical for the enhanced reliability of autonomous vehicles (AVs)
It is critical to simultaneously optimize the AVs' network selection and driving policies in order to minimize road collisions.
We develop a reinforcement learning framework to characterize efficient network selection and autonomous driving policies.
arXiv Detail & Related papers (2022-08-03T04:33:02Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - ANT: Learning Accurate Network Throughput for Better Adaptive Video
Streaming [20.544139447901113]
Adaptive Bit Rate (ABR) decision plays a crucial role for ensuring satisfactory Quality of Experience (QoE) in video streaming applications.
This paper proposes to learn the ANT (a.k.a., Accurate Network Throughput) model to characterize the full spectrum of network throughput dynamics in the past.
Experiment results show that our approach can significantly improve the user QoE by 65.5% and 31.3% respectively, compared with the state-of-the-art Pensive and Oboe.
arXiv Detail & Related papers (2021-04-26T12:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.