Characterizing Behavioral Differences and Adaptations of Automated Vehicles and Human Drivers at Unsignalized Intersections: Insights from Waymo and Lyft Open Datasets
- URL: http://arxiv.org/abs/2410.12538v1
- Date: Wed, 16 Oct 2024 13:19:32 GMT
- Title: Characterizing Behavioral Differences and Adaptations of Automated Vehicles and Human Drivers at Unsignalized Intersections: Insights from Waymo and Lyft Open Datasets
- Authors: Saeed Rahmani, Zhenlin, Xu, Simeon C. Calvert, Bart van Arem,
- Abstract summary: The integration of autonomous vehicles (AVs) into transportation systems presents an unprecedented opportunity to enhance road safety and efficiency.
This study aims to bridge the gap by examining behavioral differences and adaptations of AVs and human-driven vehicles (HVs) at unsignalized intersections.
Using a systematic methodology, the research identifies and analyzes merging and crossing conflicts by calculating key safety and efficiency metrics.
- Score: 9.080817016043769
- License:
- Abstract: The integration of autonomous vehicles (AVs) into transportation systems presents an unprecedented opportunity to enhance road safety and efficiency. However, understanding the interactions between AVs and human-driven vehicles (HVs) at intersections remains an open research question. This study aims to bridge this gap by examining behavioral differences and adaptations of AVs and HVs at unsignalized intersections by utilizing two comprehensive AV datasets from Waymo and Lyft. Using a systematic methodology, the research identifies and analyzes merging and crossing conflicts by calculating key safety and efficiency metrics, including time to collision (TTC), post-encroachment time (PET), maximum required deceleration (MRD), time advantage (TA), and speed and acceleration profiles. The findings reveal a paradox in mixed traffic flow: while AVs maintain larger safety margins, their conservative behavior can lead to unexpected situations for human drivers, potentially causing unsafe conditions. From a performance point of view, human drivers exhibit more consistent behavior when interacting with AVs versus other HVs, suggesting AVs may contribute to harmonizing traffic flow patterns. Moreover, notable differences were observed between Waymo and Lyft vehicles, which highlights the importance of considering manufacturer-specific AV behaviors in traffic modeling and management strategies for the safe integration of AVs. The processed dataset utilized in this study is openly published to foster the research on AV-HV interactions.
Related papers
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - CAV-AHDV-CAV: Mitigating Traffic Oscillations for CAVs through a Novel Car-Following Structure and Reinforcement Learning [8.63981338420553]
Connected and Automated Vehicles (CAVs) offer a promising solution to the challenges of mixed traffic with both CAVs and Human-Driven Vehicles (HDVs)
While HDVs rely on limited information, CAVs can leverage data from other CAVs for better decision-making.
We propose a novel "CAV-AHDV-CAV" car-following framework that treats the sequence of HDVs between two CAVs as a single entity.
arXiv Detail & Related papers (2024-06-23T15:38:29Z) - Development and Assessment of Autonomous Vehicles in Both Fully
Automated and Mixed Traffic Conditions [0.0]
The paper presents a multi-stage approach, starting with the development of a single AV and progressing to connected AVs.
A survey is conducted to validate the driving performance of the AV and will be utilized for a mixed traffic case study.
Results show that using deep reinforcement learning, the AV acquired driving behavior that reached human driving performance.
The adoption of sharing and caring based V2V communication within AV networks enhances their driving behavior, aids in more effective action planning, and promotes collaborative behavior amongst the AVs.
arXiv Detail & Related papers (2023-12-08T02:40:11Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
Traffic accidents frequently lead to fatal injuries, contributing to over 50 million deaths until 2023.
Previous research primarily assessed the importance of individual participants, treating them as independent entities.
We introduce Driving scene Relationship self-Understanding transformer (DRUformer) to enhance the important object detection task.
arXiv Detail & Related papers (2023-11-11T07:26:47Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner.
We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events.
arXiv Detail & Related papers (2023-01-12T13:10:47Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - A Cooperation-Aware Lane Change Method for Autonomous Vehicles [16.937363492078426]
This paper presents a cooperation-aware lane change method utilizing interactions between vehicles.
We first propose an interactive trajectory prediction method to explore possible cooperations between an AV and the others.
We then propose a motion planning algorithm based on model predictive control (MPC), which incorporates AV's decision and surrounding vehicles' interactive behaviors into constraints.
arXiv Detail & Related papers (2022-01-26T04:45:45Z) - Multi-agent Reinforcement Learning for Cooperative Lane Changing of
Connected and Autonomous Vehicles in Mixed Traffic [16.858651125916133]
Lane-changing is a great challenge for autonomous vehicles (AVs) in mixed and dynamic traffic scenarios.
In this paper, we formulate the lane-changing decision making of multiple AVs in a mixed-traffic highway environment as a multi-agent reinforcement learning (MARL) problem.
Our proposed MARL framework consistently outperforms several state-of-the-art benchmarks in terms of efficiency, safety and driver comfort.
arXiv Detail & Related papers (2021-11-11T17:17:24Z) - Using UAVs for vehicle tracking and collision risk assessment at
intersections [2.090380922731455]
This research demonstrates the application of UAVs and V2X connectivity to track the movement of road users and assess potential collisions at intersections.
The proposed method combines deep-learning based tracking algorithms and time-to-collision tasks.
arXiv Detail & Related papers (2021-10-11T19:38:24Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.