論文の概要: Towards More Effective Table-to-Text Generation: Assessing In-Context Learning and Self-Evaluation with Open-Source Models
- arxiv url: http://arxiv.org/abs/2410.12878v1
- Date: Tue, 15 Oct 2024 09:19:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:23:01.190354
- Title: Towards More Effective Table-to-Text Generation: Assessing In-Context Learning and Self-Evaluation with Open-Source Models
- Title(参考訳): より効果的なテーブル・ツー・テキスト生成に向けて:オープンソース・モデルによる文脈学習と自己評価の評価
- Authors: Sahar Iravani, Tim . O . F Conrad,
- Abstract要約: 本研究では,ベンチマークデータセット間の言語モデル(LM)における様々なコンテキスト内学習戦略の有効性について検討する。
我々は、チェーンオブ思考推論を用いた大規模言語モデル(LLM)の自己評価アプローチを採用し、BERTScoreのような人力対応メトリクスとの相関性を評価する。
本研究はテーブル・ツー・テキスト・ジェネレーションの改善における実例の顕著な影響を浮き彫りにし, LLM の自己評価には可能性があるが, 人間の判断と現在の整合性は向上する可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Table processing, a key task in natural language processing, has significantly benefited from recent advancements in language models (LMs). However, the capabilities of LMs in table-to-text generation, which transforms structured data into coherent narrative text, require an in-depth investigation, especially with current open-source models. This study explores the effectiveness of various in-context learning strategies in LMs across benchmark datasets, focusing on the impact of providing examples to the model. More importantly, we examine a real-world use case, offering valuable insights into practical applications. To complement traditional evaluation metrics, we employ a large language model (LLM) self-evaluation approach using chain-of-thought reasoning and assess its correlation with human-aligned metrics like BERTScore. Our findings highlight the significant impact of examples in improving table-to-text generation and suggest that, while LLM self-evaluation has potential, its current alignment with human judgment could be enhanced. This points to the need for more reliable evaluation methods.
- Abstract(参考訳): 自然言語処理における重要なタスクであるテーブル処理は、近年の言語モデル(LM)の進歩から大きな恩恵を受けている。
しかし、構造化されたデータをコヒーレントな物語テキストに変換するテーブル・ツー・テキスト生成におけるLMの能力は、特に現在のオープンソースモデルにおいて、詳細な調査を必要とする。
本研究は、モデルにサンプルを提供することによる影響に着目し、ベンチマークデータセット間のLMにおける様々なコンテキスト内学習戦略の有効性について検討する。
さらに重要なのは、実世界のユースケースを調べ、実用的なアプリケーションに関する貴重な洞察を提供することです。
従来の評価指標を補完するために,チェーン・オブ・ソート推論を用いた大規模言語モデル(LLM)による自己評価手法を採用し,BERTScoreのような人為的な指標との相関性を評価する。
本研究はテーブル・ツー・テキスト・ジェネレーションの改善における実例の顕著な影響を浮き彫りにし, LLM の自己評価には可能性があるが, 人間の判断と現在の整合性は向上する可能性が示唆された。
これは、より信頼性の高い評価方法の必要性を示している。
関連論文リスト
- Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて重要な役割を果たす。
本研究では,ロシアのソーシャルメディアにおけるグリーンプラクティスの言及を検出するために,プロンプトベースのデータ拡張を適用した。
論文 参考訳(メタデータ) (2024-11-22T12:37:41Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study [41.84915013818794]
The Natural Language to Visualization (NL2Vis) taskは、自然言語記述を接地テーブルの視覚表現に変換することを目的としている。
多くのディープラーニングベースのアプローチがNL2Vis向けに開発されているが、目に見えないデータベースや複数のテーブルにまたがるデータの視覚化には課題が続いている。
本稿では,Large Language Models (LLMs) の顕著な生成能力からインスピレーションを得て,その可能性を評価するための実証的研究を行う。
論文 参考訳(メタデータ) (2024-04-26T03:25:35Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
本研究では,機械翻訳評価タスクにおいて,Large Language Models (LLM) がソースデータと参照データをどのように活用するかを検討する。
参照情報が評価精度を大幅に向上させるのに対して,意外なことに,ソース情報は時として非生産的である。
論文 参考訳(メタデータ) (2024-01-12T13:23:21Z) - LLMs as Narcissistic Evaluators: When Ego Inflates Evaluation Scores [23.568883428947494]
本研究は,LMに基づく評価指標が,要約タスクの文脈において,それぞれの基盤となるLMに対して有利なバイアスを示すかどうかを考察する。
以上の結果から, 金のサマリーを活用せずに, 基準のない手法で評価指標を用いた場合, 特に有意なバイアスがみられた。
これらの結果は、生成的評価モデルによって提供される評価は、本質的なテキスト品質を超える要因に影響される可能性があることを裏付けている。
論文 参考訳(メタデータ) (2023-11-16T10:43:26Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
大規模言語モデル(LLM)の自己教師型評価のためのフレームワークを提案する。
閉書知識,毒性,長期文脈依存性を測定するための自己指導型評価戦略を実証する。
自己監督評価と人監督評価との間には強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-06-23T17:59:09Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。