Evaluating the Instruction-following Abilities of Language Models using Knowledge Tasks
- URL: http://arxiv.org/abs/2410.12972v1
- Date: Wed, 16 Oct 2024 19:07:37 GMT
- Title: Evaluating the Instruction-following Abilities of Language Models using Knowledge Tasks
- Authors: Rudra Murthy, Prince Kumar, Praveen Venkateswaran, Danish Contractor,
- Abstract summary: We focus on developing a benchmark for instruction-following where it is easy to verify both task performance as well as instruction-following capabilities.
We adapt existing knowledge benchmarks and augment them with instructions that are a) conditional on correctly answering the knowledge task or b) use the space of candidate options in multiple-choice knowledge-answering tasks.
We find that even large-scale instruction-tuned LLMs fail to follow simple instructions in zero-shot settings.
- Score: 4.945902994386117
- License:
- Abstract: In this work, we focus our attention on developing a benchmark for instruction-following where it is easy to verify both task performance as well as instruction-following capabilities. We adapt existing knowledge benchmarks and augment them with instructions that are a) conditional on correctly answering the knowledge task or b) use the space of candidate options in multiple-choice knowledge-answering tasks. This allows us to study model characteristics, such as their change in performance on the knowledge tasks in the presence of answer-modifying instructions and distractor instructions. In contrast to existing benchmarks for instruction following, we not only measure instruction-following capabilities but also use LLM-free methods to study task performance. We study a series of openly available large language models of varying parameter sizes (1B-405B) and closed source models namely GPT-4o-mini, GPT-4o. We find that even large-scale instruction-tuned LLMs fail to follow simple instructions in zero-shot settings. We release our dataset, the benchmark, code, and results for future work.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - The SIFo Benchmark: Investigating the Sequential Instruction Following Ability of Large Language Models [48.455388608863785]
We introduce a benchmark designed to evaluate models' abilities to follow multiple instructions through sequential instruction following tasks.
Our benchmark evaluates instruction following using four tasks (text modification, question answering, mathematics, and security rules)
More recent and larger models significantly outperform their older and smaller counterparts on the SIFo tasks, validating the benchmark's effectiveness.
arXiv Detail & Related papers (2024-06-28T15:34:26Z) - Don't Half-listen: Capturing Key-part Information in Continual Instruction Tuning [13.535110749767451]
We propose a novel continual instruction tuning method based on Key-part Information Gain (KPIG)
Our method computes the information gain on masked parts to dynamically replay data and refine the training objective.
Experiments demonstrate our method achieves superior performance on both seen and held-out tasks.
arXiv Detail & Related papers (2024-03-15T06:54:20Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
We investigate how instruction tuning adjusts pre-trained models with a focus on intrinsic changes.
The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models.
Our findings reveal three significant impacts of instruction tuning.
arXiv Detail & Related papers (2023-09-30T21:16:05Z) - Mitigating Hallucination in Large Multi-Modal Models via Robust Instruction Tuning [92.85265959892115]
This paper introduces the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction.
Our dataset comprises 400k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers.
To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a stable approach to evaluate visual instruction tuning like human experts.
arXiv Detail & Related papers (2023-06-26T10:26:33Z) - Did You Read the Instructions? Rethinking the Effectiveness of Task
Definitions in Instruction Learning [74.70157466822612]
We systematically study the role of task definitions in instruction learning.
We find that model performance drops substantially when removing contents describing the task output.
We propose two strategies to help models better leverage task instructions.
arXiv Detail & Related papers (2023-06-01T21:11:24Z) - Investigating the Effectiveness of Task-Agnostic Prefix Prompt for
Instruction Following [44.701091969256055]
We present our finding that prepending a Task-Agnostic Prefix Prompt (TAPP) to the input improves the instruction-following ability of various Large Language Models (LLMs) during inference.
We observe that both base LLMs (i.e. not fine-tuned to follow instructions) and instruction-tuned models benefit from TAPP, resulting in 34.58% and 12.26% improvement on average.
arXiv Detail & Related papers (2023-02-28T16:06:35Z) - Large Language Models Are Human-Level Prompt Engineers [31.98042013940282]
We propose Automatic Prompt Engineer for automatic instruction generation and selection.
We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness.
arXiv Detail & Related papers (2022-11-03T15:43:03Z) - Finetuned Language Models Are Zero-Shot Learners [67.70352207685558]
We show that instruction tuning boosts zero-shot performance on unseen tasks.
We take a 137B parameter pretrained language model and instruction-tune it on over 60 NLP tasks verbalized via natural language instruction templates.
We evaluate this instruction-tuned model, which we call FLAN, on unseen task types.
arXiv Detail & Related papers (2021-09-03T17:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.