論文の概要: Scalable Drift Monitoring in Medical Imaging AI
- arxiv url: http://arxiv.org/abs/2410.13174v2
- Date: Fri, 18 Oct 2024 16:26:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 10:25:26.222395
- Title: Scalable Drift Monitoring in Medical Imaging AI
- Title(参考訳): 医用イメージングAIにおけるスケーラブルドリフトモニタリング
- Authors: Jameson Merkow, Felix J. Dorfner, Xiyu Yang, Alexander Ersoy, Giridhar Dasegowda, Mannudeep Kalra, Matthew P. Lungren, Christopher P. Bridge, Ivan Tarapov,
- Abstract要約: 我々は,スケーラブルなドリフトモニタリングのための拡張フレームワークであるMCC+を開発した。
それは、医療画像AIモデルのためのリアルタイムドリフト検出を導入したCheXstrayフレームワークの上に構築されている。
MMC+は、継続的パフォーマンス監視の信頼性と費用対効果を提供する。
- 参考スコア(独自算出の注目度): 37.1899538374058
- License:
- Abstract: The integration of artificial intelligence (AI) into medical imaging has advanced clinical diagnostics but poses challenges in managing model drift and ensuring long-term reliability. To address these challenges, we develop MMC+, an enhanced framework for scalable drift monitoring, building upon the CheXstray framework that introduced real-time drift detection for medical imaging AI models using multi-modal data concordance. This work extends the original framework's methodologies, providing a more scalable and adaptable solution for real-world healthcare settings and offers a reliable and cost-effective alternative to continuous performance monitoring addressing limitations of both continuous and periodic monitoring methods. MMC+ introduces critical improvements to the original framework, including more robust handling of diverse data streams, improved scalability with the integration of foundation models like MedImageInsight for high-dimensional image embeddings without site-specific training, and the introduction of uncertainty bounds to better capture drift in dynamic clinical environments. Validated with real-world data from Massachusetts General Hospital during the COVID-19 pandemic, MMC+ effectively detects significant data shifts and correlates them with model performance changes. While not directly predicting performance degradation, MMC+ serves as an early warning system, indicating when AI systems may deviate from acceptable performance bounds and enabling timely interventions. By emphasizing the importance of monitoring diverse data streams and evaluating data shifts alongside model performance, this work contributes to the broader adoption and integration of AI solutions in clinical settings.
- Abstract(参考訳): 医用画像への人工知能(AI)の統合は、臨床診断に進歩しているが、モデルドリフトの管理や長期的な信頼性確保には課題がある。
これらの課題に対処するため,マルチモーダルデータ一致を用いた医用画像AIモデルのリアルタイムドリフト検出を導入したCheXstrayフレームワークを基盤として,スケーラブルなドリフトモニタリングのための拡張フレームワークであるMCC+を開発した。
この作業は、オリジナルのフレームワークの方法論を拡張し、現実のヘルスケア設定に対してよりスケーラブルで適応可能なソリューションを提供し、継続的および定期的な監視方法の制限に対処する継続的パフォーマンス監視の信頼性と費用対効果を提供する。
MMC+は、多様なデータストリームのより堅牢な処理、サイト固有のトレーニングなしでの高次元画像埋め込みのためのMedImageInsightのような基盤モデルの統合によるスケーラビリティの向上、動的臨床環境におけるドリフトを捉えるための不確実性バウンダリの導入など、オリジナルのフレームワークに重要な改善を加えた。
新型コロナウイルス(COVID-19)パンデミックの間、マサチューセッツ総合病院の現実世界のデータで確認されたMCC+は、重要なデータシフトを効果的に検出し、モデルのパフォーマンス変化と相関する。
MMC+はパフォーマンスの劣化を直接予測するものではないが、早期警告システムとして機能し、AIシステムが許容されるパフォーマンス境界から逸脱し、タイムリーな介入を可能にする可能性を示唆している。
多様なデータストリームを監視することの重要性を強調し、モデルパフォーマンスと並行してデータシフトを評価することで、この研究は、臨床環境におけるAIソリューションの広範な採用と統合に寄与する。
関連論文リスト
- Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
網膜疾患診断のための堅牢なディープラーニングモデルの開発には、トレーニングのためのかなりのデータセットが必要である。
より小さなデータセットで効果的に一般化する能力は、依然として永続的な課題である。
さまざまなデータソースを組み合わせて、パフォーマンスを改善し、新しいデータに一般化しています。
論文 参考訳(メタデータ) (2024-09-17T17:22:35Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions [0.13108652488669734]
神経ネットワークに基づくシステムの臨床実践への統合は、ドメインの一般化と堅牢性に関連する課題によって制限される。
我々は、12のデータセットと9つの画像モダリティをカバーするMedMNIST+コレクションに基づくベンチマークデータセットであるMedMNIST-Cを作成し、オープンソース化した。
論文 参考訳(メタデータ) (2024-06-25T13:20:39Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
論文 参考訳(メタデータ) (2024-04-03T13:35:51Z) - New Epochs in AI Supervision: Design and Implementation of an Autonomous
Radiology AI Monitoring System [5.50085484902146]
本稿では,放射線学AI分類モデルの性能を実際に監視するための新しい手法を提案する。
予測分散と時間安定性という2つの指標を提案し、AIのパフォーマンス変化のプリエンプティブアラートに使用する。
論文 参考訳(メタデータ) (2023-11-24T06:29:04Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - CheXstray: Real-time Multi-Modal Data Concordance for Drift Detection in
Medical Imaging AI [1.359138408203412]
医用画像AIドリフトモニタリングワークフローを構築してテストし、同時代の地上真実なしにデータとモデルドリフトを追跡する。
主な貢献は,(1)VAEおよび領域特異的統計手法を含む医用画像ドリフト検出のための概念実証である。
この研究は、動的医療環境における継続的医療画像AIモデルモニタリングに関連する翻訳ギャップに対処するために重要な意味を持つ。
論文 参考訳(メタデータ) (2022-02-06T18:58:35Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。