論文の概要: Ornstein-Uhlenbeck Adaptation as a Mechanism for Learning in Brains and Machines
- arxiv url: http://arxiv.org/abs/2410.13563v1
- Date: Thu, 17 Oct 2024 14:00:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:18:56.230298
- Title: Ornstein-Uhlenbeck Adaptation as a Mechanism for Learning in Brains and Machines
- Title(参考訳): 脳と機械の学習メカニズムとしてのオルンシュタイン・ウレンベック適応
- Authors: Jesus Garcia Fernandez, Nasir Ahmad, Marcel van Gerven,
- Abstract要約: システムのパラメータと大域的強化信号のノイズを利用する新しい手法を提案する。
連続的に動作し、学習の一般的なメカニズムとしてオルシュタイン・ウレンベック適応(OUA)が提案されている。
OUAは、ニューロモルフィックコンピューティングに潜在的に応用可能な、従来の勾配に基づく手法に代わる実行可能な代替手段を提供する。
- 参考スコア(独自算出の注目度): 2.1168858935852013
- License:
- Abstract: Learning is a fundamental property of intelligent systems, observed across biological organisms and engineered systems. While modern intelligent systems typically rely on gradient descent for learning, the need for exact gradients and complex information flow makes its implementation in biological and neuromorphic systems challenging. This has motivated the exploration of alternative learning mechanisms that can operate locally and do not rely on exact gradients. In this work, we introduce a novel approach that leverages noise in the parameters of the system and global reinforcement signals. Using an Ornstein-Uhlenbeck process with adaptive dynamics, our method balances exploration and exploitation during learning, driven by deviations from error predictions, akin to reward prediction error. Operating in continuous time, Orstein-Uhlenbeck adaptation (OUA) is proposed as a general mechanism for learning dynamic, time-evolving environments. We validate our approach across diverse tasks, including supervised learning and reinforcement learning in feedforward and recurrent systems. Additionally, we demonstrate that it can perform meta-learning, adjusting hyper-parameters autonomously. Our results indicate that OUA provides a viable alternative to traditional gradient-based methods, with potential applications in neuromorphic computing. It also hints at a possible mechanism for noise-driven learning in the brain, where stochastic neurotransmitter release may guide synaptic adjustments.
- Abstract(参考訳): 学習は知的システムの基本的な性質であり、生物や工学的なシステムで観察される。
現代のインテリジェントシステムは通常、学習に勾配勾配に依存するが、正確な勾配と複雑な情報フローの必要性は、生物学的およびニューロモルフィックシステムにおいてその実装を困難にしている。
これは、局所的に動作し、正確な勾配に依存しない代替学習メカニズムの探索を動機付けている。
本研究では,システムのパラメータと大域的強化信号の雑音を利用した新しい手法を提案する。
適応力学を用いたOrnstein-Uhlenbeckプロセスを用いて,誤差予測からの逸脱による学習中の探索と搾取のバランスをとる。
連続時間で運用するOrstein-Uhlenbeck適応(OUA)は、動的な時間進化環境を学習するための一般的なメカニズムとして提案されている。
我々は,フィードフォワードおよびリカレントシステムにおける教師付き学習や強化学習など,多様なタスクにまたがるアプローチを検証する。
さらに、メタラーニングを行い、ハイパーパラメータを自律的に調整できることを実証する。
以上の結果から,OUAは従来の勾配法に代わる有効な代替手段であり,ニューロモルフィックコンピューティングにも応用できる可能性が示唆された。
これはまた、確率論的神経伝達物質放出がシナプス調節を導く脳内のノイズ駆動学習のメカニズムを示唆している。
関連論文リスト
- Let's do the time-warp-attend: Learning topological invariants of dynamical systems [3.9735602856280132]
本稿では、動的状態の分類と分岐境界の特徴付けのための、データ駆動型、物理的にインフォームドされたディープラーニングフレームワークを提案する。
超臨界ホップ分岐のパラダイム的ケースに着目し、様々な応用の周期的ダイナミクスをモデル化する。
本手法は, 広範囲な力学系の定性的・長期的挙動に関する貴重な知見を提供し, 大規模物理・生物系における分岐や破滅的な遷移を検出する。
論文 参考訳(メタデータ) (2023-12-14T18:57:16Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Learning low-dimensional dynamics from whole-brain data improves task
capture [2.82277518679026]
逐次変分オートエンコーダ(SVAE)を用いたニューラルダイナミクスの低次元近似学習手法を提案する。
本手法は,従来の手法よりも精度の高い認知過程を予測できるスムーズなダイナミクスを見出す。
我々は、モータ、ワーキングメモリ、リレーショナル処理タスクを含む様々なタスクfMRIデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-05-18T18:43:13Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - The least-control principle for learning at equilibrium [65.2998274413952]
我々は、平衡反復ニューラルネットワーク、深層平衡モデル、メタラーニングを学ぶための新しい原理を提案する。
私たちの結果は、脳がどのように学習するかを明らかにし、幅広い機械学習問題にアプローチする新しい方法を提供します。
論文 参考訳(メタデータ) (2022-07-04T11:27:08Z) - Agnostic Physics-Driven Deep Learning [82.89993762912795]
この研究は、物理系が勾配計算を使わずに統計的勾配学習を行えることを証明している。
Aeqpropでは、システムの詳細を知る必要はなく、プロシージャは外部操作に基づいている。
Aeqpropはまた、自然(生物)物理系において、真の勾配に基づく統計学習は、一般的な比較的単純なメカニズムによってもたらされることを証明している。
論文 参考訳(メタデータ) (2022-05-30T12:02:53Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Inferring Global Dynamics Using a Learning Machine [5.07635313657742]
学習機械を用いてある程度の目標を達成することができることを示す。
単調にコスト関数を減少させる適切なトレーニング戦略に従って、異なるトレーニング段階の学習機は異なるパラメータセットでシステムを模倣することができる。
論文 参考訳(メタデータ) (2020-09-28T02:54:44Z) - Planning from Images with Deep Latent Gaussian Process Dynamics [2.924868086534434]
計画は既知の環境力学の問題を制御するための強力なアプローチである。
未知の環境では、エージェントは計画を適用するためにシステムダイナミクスのモデルを学ぶ必要がある。
本稿では,環境と視覚的相互作用から低次元システムダイナミクスを学習する,遅延ガウス過程力学(DLGPD)モデルを提案する。
論文 参考訳(メタデータ) (2020-05-07T21:29:45Z) - Uncertainty-based Modulation for Lifelong Learning [1.3334365645271111]
本稿では、Stephen Grossberg氏のAdaptive Resonance Theory(Adaptive Resonance Theory)提案に基づき、ヒト脳の神経調節機構にインスパイアされたアルゴリズムを提案する。
具体的には、不確実性の概念に基づいて構築され、継続的な学習を可能にするために一連の神経調節機構を使用している。
我々は,環境やエージェントの行動が学習過程を制約し,指導する閉ループ方式でこれらのシステムを開発する上で重要な役割を実証する。
論文 参考訳(メタデータ) (2020-01-27T14:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。