360U-Former: HDR Illumination Estimation with Panoramic Adapted Vision Transformers
- URL: http://arxiv.org/abs/2410.13566v1
- Date: Thu, 17 Oct 2024 14:03:53 GMT
- Title: 360U-Former: HDR Illumination Estimation with Panoramic Adapted Vision Transformers
- Authors: Jack Hilliard, Adrian Hilton, Jean-Yves Guillemaut,
- Abstract summary: We train 360U-Former as a GAN to generate HDRI from a limited field of view low dynamic range image (LDRI)
We evaluate our method using current illumination estimation protocols and datasets.
- Score: 21.393389135740712
- License:
- Abstract: Recent illumination estimation methods have focused on enhancing the resolution and improving the quality and diversity of the generated textures. However, few have explored tailoring the neural network architecture to the Equirectangular Panorama (ERP) format utilised in image-based lighting. Consequently, high dynamic range images (HDRI) results usually exhibit a seam at the side borders and textures or objects that are warped at the poles. To address this shortcoming we propose a novel architecture, 360U-Former, based on a U-Net style Vision-Transformer which leverages the work of PanoSWIN, an adapted shifted window attention tailored to the ERP format. To the best of our knowledge, this is the first purely Vision-Transformer model used in the field of illumination estimation. We train 360U-Former as a GAN to generate HDRI from a limited field of view low dynamic range image (LDRI). We evaluate our method using current illumination estimation evaluation protocols and datasets, demonstrating that our approach outperforms existing and state-of-the-art methods without the artefacts typically associated with the use of the ERP format.
Related papers
- $R^2$-Mesh: Reinforcement Learning Powered Mesh Reconstruction via Geometry and Appearance Refinement [5.810659946867557]
Mesh reconstruction based on Neural Radiance Fields (NeRF) is popular in a variety of applications such as computer graphics, virtual reality, and medical imaging.
We propose a novel algorithm that progressively generates and optimize meshes from multi-view images.
Our method delivers highly competitive and robust performance in both mesh rendering quality and geometric quality.
arXiv Detail & Related papers (2024-08-19T16:33:17Z) - Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations [6.113035634680655]
Current deep learning-based low-light image enhancement methods often struggle with high-resolution images.
We introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component.
arXiv Detail & Related papers (2024-07-17T11:51:52Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
We propose a novel approach for 3D mesh reconstruction from multi-view images.
Our method takes inspiration from large reconstruction models that use a transformer-based triplane generator and a Neural Radiance Field (NeRF) model trained on multi-view images.
arXiv Detail & Related papers (2024-06-09T05:19:24Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - Guided Co-Modulated GAN for 360{\deg} Field of View Extrapolation [15.850166450573756]
We propose a method to extrapolate a 360deg field of view from a single image.
Our method obtains state-of-the-art results and outperforms previous methods on standard image quality metrics.
arXiv Detail & Related papers (2022-04-15T01:48:35Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.