論文の概要: SimLayerKV: A Simple Framework for Layer-Level KV Cache Reduction
- arxiv url: http://arxiv.org/abs/2410.13846v1
- Date: Thu, 17 Oct 2024 17:58:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:22:32.074660
- Title: SimLayerKV: A Simple Framework for Layer-Level KV Cache Reduction
- Title(参考訳): SimLayerKV: レイヤレベルのKVキャッシュ削減のためのシンプルなフレームワーク
- Authors: Xuan Zhang, Cunxiao Du, Chao Du, Tianyu Pang, Wei Gao, Min Lin,
- Abstract要約: 遅延層にキャッシュを選択的にドロップすることで、層間KVキャッシュの冗長性を低減できるSimLayerKVを提案する。
我々のアプローチは、長文大言語モデルのある層が「怠慢」な振る舞いを示すという観察に基づいている。
SimLayerKVは、KVキャッシュ圧縮比が5$times$で、4ビット量子化と組み合わせると1.2%の性能低下しか達成しない。
- 参考スコア(独自算出の注目度): 32.708003629395336
- License:
- Abstract: Recent advancements in large language models (LLMs) have extended their capabilities to handle long contexts. However, increasing the number of model layers and the length of input sequences significantly escalates the memory required to store key-value (KV) cache, posing challenges for efficient inference. To mitigate this issue, we present SimLayerKV, a simple yet effective method that reduces inter-layer KV cache redundancies by selectively dropping cache in identified lazy layers. Our approach is based on the observation that certain layers in long-context LLMs exhibit "lazy" behavior, contributing less to modeling long-range dependencies compared to non-lazy layers. By analyzing attention weight patterns, we find that the behavior of these lazy layers is consistent across tokens during generation for a given input. This insight motivates our SimLayerKV, which identifies lazy layers and reduces their KV cache accordingly. SimLayerKV is training-free, generalizable, and can be implemented with only seven lines of code. We conduct extensive experiments on three representative LLMs, e.g., LLaMA2-7B, LLaMA3-8B, and Mistral-7B across 16 tasks from the LongBench benchmark. The results demonstrate that SimLayerKV achieves a KV cache compression ratio of 5$\times$ with only a 1.2% performance drop when combined with 4-bit quantization. Our code is available at https://github.com/sail-sg/SimLayerKV.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、長いコンテキストを扱う能力を拡張している。
しかし、モデルレイヤの数を増やし、入力シーケンスの長さを長くすると、キー値(KV)キャッシュを格納するために必要なメモリが大幅に増大し、効率的な推論の課題が引き起こされる。
この問題を軽減するためにSimLayerKVを提案する。SimLayerKVは、特定遅延層にキャッシュを選択的にドロップすることで、層間KVキャッシュの冗長性を低減できる。
我々のアプローチは、長文LLMの特定の層が「怠慢」な振る舞いを示すという観察に基づいており、非怠慢な層に比べて長距離依存のモデリングにはあまり寄与しない。
注意重みパターンを解析することにより、これらの遅延層の挙動が、与えられた入力の生成中にトークン間で一致していることが分かる。
この洞察は、遅延層を特定し、それに応じてKVキャッシュを減らすSimLayerKVを動機付けます。
SimLayerKVはトレーニング不要で、一般化可能で、7行のコードで実装できる。
我々はLongBenchベンチマークから16のタスクに対して,LLaMA2-7B,LLaMA3-8B,Mistral-7Bの3つの代表LSMについて広範な実験を行った。
その結果、SimLayerKVはKVキャッシュ圧縮比が5$\times$で、4ビット量子化と組み合わせると1.2%の性能低下しか得られないことがわかった。
私たちのコードはhttps://github.com/sail-sg/SimLayerKV.comで利用可能です。
関連論文リスト
- p-MoD: Building Mixture-of-Depths MLLMs via Progressive Ratio Decay [18.958138693220704]
そこで我々は,Mixture-of-Depths (MoD) 機構を利用して,効率的なマルチモーダル大言語モデル(MLLM)を構築することを提案する。
我々は、Tanh-gateweight normalization (TanhNorm) と symmetric token reweighting (STRing) の2つの新しい設計でMoDモジュールを適応する。
我々のモデルであるp-MoDは、ベースラインモデルの性能にマッチまたは超え、推論時に55.6%のTFLOPと53.8%のKVキャッシュストレージ、トレーニング時に77.7%のGPU時間しか持たない。
論文 参考訳(メタデータ) (2024-12-05T18:58:03Z) - Transformer Layer Injection: A Novel Approach for Efficient Upscaling of Large Language Models [0.0]
Transformer Layer Injection (TLI)は、大規模言語モデル(LLM)を効率的にスケールアップする新しい手法である。
提案手法は, 各K層に新しい層を注入することにより, 従来の深層アップスケーリング(DUS)技術を改善する。
論文 参考訳(メタデータ) (2024-10-15T14:41:44Z) - The Mamba in the Llama: Distilling and Accelerating Hybrid Models [76.64055251296548]
注目層からの線形射影重みを学術的なGPU資源で再利用することにより,大規模な変換器を線形RNNに蒸留する方法を示す。
結果として得られたハイブリッドモデルは、チャットベンチマークのオリジナルのTransformerに匹敵するパフォーマンスを達成する。
また,Mambaとハイブリッドモデルの推論速度を高速化するハードウェア対応投機的復号アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-08-27T17:56:11Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Repeat After Me: Transformers are Better than State Space Models at Copying [53.47717661441142]
一般化された状態空間モデルは、推論時間効率の観点からは有望であるが、入力コンテキストからのコピーを必要とするタスクのトランスフォーマーモデルと比較して限定的であることを示す。
論文 参考訳(メタデータ) (2024-02-01T21:44:11Z) - TransNormerLLM: A Faster and Better Large Language Model with Improved
TransNormer [34.790081960470964]
最初の線形注意に基づくLarge Language Model(LLM)であるTransNormerLLMを提案する。
我々は, 位置埋め込み, 線形注意加速度, ゲーティング機構, テンソル正規化, 推論加速度, 安定化など, 高度な修正を行う。
自己収集コーパス上に385M, 1B, 7Bの大きさの列車モデルとアブリケーションを用いてモデル設計を検証する。
論文 参考訳(メタデータ) (2023-07-27T16:45:33Z) - Fourier Transformer: Fast Long Range Modeling by Removing Sequence
Redundancy with FFT Operator [24.690247474891958]
フーリエ変換器は、様々な大きな事前訓練されたモデルから継承する能力を維持しながら、計算コストを大幅に削減することができる。
本モデルは,長距離モデリングベンチマークLRAにおいて,トランスフォーマーベースモデル間の最先端性能を実現する。
CNN/DailyMailやELI5などのシークエンシャルなシークエンスタスクでは、BARTを継承することで、私たちのモデルは標準のBARTよりも優れています。
論文 参考訳(メタデータ) (2023-05-24T12:33:06Z) - Transformer-based Models for Long-Form Document Matching: Challenges and
Empirical Analysis [12.269318291685753]
単純なニューラルネットワークは、より複雑なBERTベースのモデルよりも優れていることを示す。
単純なモデルは、文書の長さやテキストの摂動のバリエーションに対して、より堅牢である。
論文 参考訳(メタデータ) (2023-02-07T21:51:05Z) - Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis [84.12658971655253]
本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
論文 参考訳(メタデータ) (2022-12-01T17:31:42Z) - Long-Short Transformer: Efficient Transformers for Language and Vision [97.2850205384295]
長短変換器(Long-Short Transformer, Transformer-LS)は、言語タスクと視覚タスクの両方に線形な複雑さを持つ長いシーケンスをモデリングするための効率的な自己アテンション機構である。
遠距離相関をモデル化するためのダイナミックプロジェクションと、局所相関を微細に捉えるための短期的注意を組み込んだ、新しい長距離の注意を集約する。
提案手法は,Long Range Arenaベンチマーク,自動回帰言語モデリング,イメージネット分類など,言語と視覚領域の複数のタスクにおける最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2021-07-05T18:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。