論文の概要: Exploiting recursive structures for the design of novel quantum primitives
- arxiv url: http://arxiv.org/abs/2410.13927v1
- Date: Thu, 17 Oct 2024 17:45:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:06.781453
- Title: Exploiting recursive structures for the design of novel quantum primitives
- Title(参考訳): 新規量子プリミティブの設計のための再帰的再帰構造
- Authors: Ning Bao, Gun Suer,
- Abstract要約: 本稿では,新しい量子プリミティブの生成に焦点を当てる。
これらの構造をどのように利用して新しい、潜在的に有利な量子アルゴリズムを設計できるかを示す。
量子アルゴリズム、数値解析、信号処理に対する潜在的な影響についてコメントする。
- 参考スコア(独自算出の注目度): 0.1227734309612871
- License:
- Abstract: The advent of fault-tolerant quantum computers marks a significant milestone, yet the development of practical quantum algorithms remains a critical challenge. Effective quantum algorithms are essential for leveraging the power of quantum computers, and their design is often non-intuitive. This paper addresses the issue of generating novel quantum primitives by focusing on recursive circuits. We explore the recursive circuit structures prevalent in existing quantum algorithms and demonstrate how these structures can be exploited to design new, potentially advantageous quantum algorithms. We base our discussion on the quantum Fourier transform (QFT), which is a primitive that is widely used in quantum algorithms. We show that the recursive structure in well-established fast classical transforms forms a fruitful bridge with quantum algorithms, enabling the design of novel quantum primitives and the discovery of new discrete numerical transforms. The discussion is split into two complementary parts, the forward and the reverse direction, in which existing classical transforms are implemented using polynomial-time quantum circuits and recursive circuits are used to find novel non-sparse classical transforms with guaranteed quantum speedup, respectively. We comment on the potential impact on quantum algorithms, numerical analysis, and signal processing.
- Abstract(参考訳): フォールトトレラント量子コンピュータの出現は重要なマイルストーンであるが、実用的な量子アルゴリズムの開発は依然として重要な課題である。
効果的な量子アルゴリズムは量子コンピュータのパワーを利用するのに不可欠であり、その設計は直感的ではないことが多い。
本稿では、再帰回路に着目して新しい量子プリミティブを生成する問題に対処する。
既存の量子アルゴリズムで一般的な再帰回路構造を探索し、これらの構造をどのように利用して新しい、潜在的に有利な量子アルゴリズムを設計できるかを実証する。
量子フーリエ変換(QFT)は量子アルゴリズムで広く使われているプリミティブである。
確立された高速古典変換における再帰構造は、量子アルゴリズムによる実りあるブリッジを形成し、新しい量子プリミティブの設計と新しい離散数値変換の発見を可能にする。
この議論は、多項式時間量子回路を用いて既存の古典変換を実装したフォワードとリバース方向の2つの相補的な部分に分けられ、それぞれが保証された量子スピードアップを持つ新しい非スパースな古典変換を見つけるために再帰回路が使用される。
量子アルゴリズム、数値解析、信号処理に対する潜在的な影響についてコメントする。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Character Complexity: A Novel Measure for Quantum Circuit Analysis [0.0]
本稿では,グループ理論の概念を実用的な量子コンピューティングの課題にブリッジする新しい尺度であるキャラクタ複雑度を紹介する。
キャラクタ複雑性のいくつかの重要な性質を証明し、量子回路の古典的シミュラビリティへの驚くべき接続を確立する。
本稿では、量子回路の構造に関する直感的な洞察を提供する、文字複雑性の革新的な可視化手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T01:58:54Z) - Quantum Circuit Ansatz: Patterns of Abstraction and Reuse of Quantum Algorithm Design [3.8425905067219492]
本稿では,量子回路のアンサーゼを分類したカタログを提案する。
各アンザッツは、意図、モチベーション、適用性、回路図、実装、例などの詳細とともに記述される。
量子アルゴリズム設計におけるそれらの応用を説明するための実例が提供されている。
論文 参考訳(メタデータ) (2024-05-08T12:44:37Z) - Quantum Dynamic Programming [0.0]
記憶された中間量子状態を用いて再帰ステップのユニタリをコヒーレントに生成する方法を示す。
量子力学プログラミングは、多数の固定点量子再帰に対して回路深さを指数関数的に減少させる。
我々は、最近提案された対角化のための二重ブラケット量子アルゴリズムに量子力学プログラミングを適用し、シュミット基底における量子状態の鮮明な準備のための新しいプロトコルを得る。
論文 参考訳(メタデータ) (2024-03-14T08:59:22Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
時間進化作用素は、量子コンピュータにおける化学実験の正確な計算において重要な役割を果たす。
我々は、運動エネルギー演算子の量子化のための新しい符号化法、すなわち量子近似時間発展法(QATE)を提案している。
論文 参考訳(メタデータ) (2023-10-05T05:25:38Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
我々の量子シンセサイザーの目的は、ユーザーが高レベルなコマンドを使って量子アルゴリズムを実装できるようにすることである。
量子アルゴリズムを実装するための提案手法は、機械学習の分野で潜在的に有効である。
論文 参考訳(メタデータ) (2022-09-20T06:25:47Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
特定の演算を行うユニタリ行列が与えられた場合、等価な量子回路を得るのは非自明な作業である。
量子ウォーカーのコイン、トフォリゲート、フレドキンゲートの3つの問題が研究されている。
提案したアルゴリズムは量子回路の分解に効率的であることが証明され、汎用的なアプローチとして、利用可能な計算力によってのみ制限される。
論文 参考訳(メタデータ) (2021-06-06T13:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。