論文の概要: Hierarchical Conditional Multi-Task Learning for Streamflow Modeling
- arxiv url: http://arxiv.org/abs/2410.14137v1
- Date: Fri, 18 Oct 2024 03:14:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:24:50.413451
- Title: Hierarchical Conditional Multi-Task Learning for Streamflow Modeling
- Title(参考訳): ストリームフローモデリングのための階層型条件付きマルチタスク学習
- Authors: Shaoming Xu, Arvind Renganathan, Ankush Khandelwal, Rahul Ghosh, Xiang Li, Licheng Liu, Kshitij Tayal, Peter Harrington, Xiaowei Jia, Zhenong Jin, Jonh Nieber, Vipin Kumar,
- Abstract要約: 階層型条件付きマルチタスク学習(HCMTL)は,流れの因果関係に基づく土壌水と積雪の連成モデルである。
HCMTLの長期にわたる排水流域での優れた性能は、ドメイン固有の因果知識を深層学習に統合することで、予測精度と解釈可能性の両方が向上することを示している。
- 参考スコア(独自算出の注目度): 24.040194424037065
- License:
- Abstract: Streamflow, vital for water resource management, is governed by complex hydrological systems involving intermediate processes driven by meteorological forces. While deep learning models have achieved state-of-the-art results of streamflow prediction, their end-to-end single-task learning approach often fails to capture the causal relationships within these systems. To address this, we propose Hierarchical Conditional Multi-Task Learning (HCMTL), a hierarchical approach that jointly models soil water and snowpack processes based on their causal connections to streamflow. HCMTL utilizes task embeddings to connect network modules, enhancing flexibility and expressiveness while capturing unobserved processes beyond soil water and snowpack. It also incorporates the Conditional Mini-Batch strategy to improve long time series modeling. We compare HCMTL with five baselines on a global dataset. HCMTL's superior performance across hundreds of drainage basins over extended periods shows that integrating domain-specific causal knowledge into deep learning enhances both prediction accuracy and interpretability. This is essential for advancing our understanding of complex hydrological systems and supporting efficient water resource management to mitigate natural disasters like droughts and floods.
- Abstract(参考訳): 水資源管理に不可欠なストリームフローは、気象力によって駆動される中間過程を含む複雑な水文システムによって管理されている。
ディープラーニングモデルは、ストリームフロー予測の最先端の結果を達成しているが、エンドツーエンドのシングルタスク学習アプローチは、これらのシステム内の因果関係を捉えるのに失敗することが多い。
これを解決するために階層型条件付きマルチタスク学習(HCMTL)を提案する。
HCMTLは、タスク埋め込みを利用してネットワークモジュールを接続し、柔軟性と表現性を向上し、土壌水やスノーパックを越えて観測されていないプロセスをキャプチャする。
また、Conditional Mini-Batch戦略を導入し、時系列モデリングを改善する。
グローバルデータセット上でHCMTLと5つのベースラインを比較した。
HCMTLの長期にわたる数百の排水流域での優れた性能は、ドメイン固有の因果知識を深層学習に統合することで、予測精度と解釈可能性の両方が向上することを示している。
これは、複雑な水系の理解を深め、干ばつや洪水などの自然災害を緩和するために効率的な水資源管理を支援するために不可欠である。
関連論文リスト
- Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems [4.634606500665259]
マルチスケールプロセスのモデリングのための知識誘導機械学習(KGML)フレームワークを提案する。
本研究では,水文学における流れ予測の文脈におけるその性能について検討する。
論文 参考訳(メタデータ) (2024-07-29T16:25:43Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Towards Interpretable Physical-Conceptual Catchment-Scale Hydrological Modeling using the Mass-Conserving-Perceptron [1.1510009152620668]
本研究では, ニューラル・アーキテクチャー・サーチを用いて, 異なる気候環境下での漁獲量に対する最小限の表現を適切に決定することにより, 地域規模のMPPに基づく水文モデル(大規模なサンプルデータを用いた)の解釈の段階を定めている。
論文 参考訳(メタデータ) (2024-01-25T21:26:49Z) - Learning from Polar Representation: An Extreme-Adaptive Model for
Long-Term Time Series Forecasting [10.892801642895904]
本稿では,距離重み付き自己正規化ニューラルネットワーク(DAN)を提案する。これは極性表現学習によって強化されたストラムフローの長距離予測のための新しい極性適応モデルである。
実生活における4つの水文流れデータセットにおいて、DANは、最先端の水文時系列予測法と長期時系列予測のための一般的な方法の両方を著しく上回っていることを実証した。
論文 参考訳(メタデータ) (2023-12-14T09:16:01Z) - Optimal scheduling of island integrated energy systems considering
multi-uncertainties and hydrothermal simultaneous transmission: A deep
reinforcement learning approach [3.900623554490941]
電力や負荷による不確実性は、島々の様々な資源の安定的な需要供給に困難をもたらしている。
これらの課題に対処するため、島統合エネルギーシステム(IES)をモデル化した総合的なスケジューリングフレームワークを提案する。
島の淡水不足に対応するため, 海水淡水化システムの導入に加えて, 水熱同時送信(HST)の伝達構造を提案する。
論文 参考訳(メタデータ) (2022-12-27T12:46:25Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Physics Guided Machine Learning Methods for Hydrology [21.410993515618895]
SWAT (Soil and Water Assessment Tool) と組み合わせたLSTMに基づくディープラーニングアーキテクチャを提案する。
アプローチの有効性はミネソタ州南東部のルート川流域の南支流にあるいくつかの小さな流域で分析されている。
論文 参考訳(メタデータ) (2020-12-02T19:17:19Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
マルチスケール自己回帰前処理(mAR)を通した遅延空間におけるチャネルワイド依存性を導入する。
我々のmARは、分割結合フロー層(mAR-SCF)を持つモデルに先立って、複雑なマルチモーダルデータの依存関係をよりよく捉えます。
我々は,mAR-SCFにより画像生成品質が向上し,FIDとインセプションのスコアは最先端のフローベースモデルと比較して向上したことを示す。
論文 参考訳(メタデータ) (2020-04-08T09:07:11Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。