論文の概要: Combining Entropy and Matrix Nuclear Norm for Enhanced Evaluation of Language Models
- arxiv url: http://arxiv.org/abs/2410.14480v1
- Date: Fri, 18 Oct 2024 14:03:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:34.868364
- Title: Combining Entropy and Matrix Nuclear Norm for Enhanced Evaluation of Language Models
- Title(参考訳): 言語モデル評価のためのエントロピーとマトリックス核ノルムの組み合わせ
- Authors: James Vo,
- Abstract要約: 大規模言語モデル(LLM)は進歩を続けており、正確で効率的な評価指標の必要性がより強くなっている。
伝統的なアプローチは、情報的ではあるが、しばしば計算要求と解釈可能性の制限に直面している。
本稿では,2つの確立された手法を統合した新しいハイブリッド評価手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As large language models (LLMs) continue to advance, the need for precise and efficient evaluation metrics becomes more pressing. Traditional approaches, while informative, often face limitations in computational demands and interpretability. In this paper, we introduce a novel hybrid evaluation method that integrates two established techniques: entropy derived from covariance matrices and the Matrix Nuclear Norm (MNN). Our method begins by normalizing hidden states from LLMs, then computes the covariance matrix and MNN from these representations. We further calculate the entropy of the covariance matrix to capture uncertainty and redundancy in the model's outputs. By combining these metrics into a composite score, we offer a comprehensive evaluation framework that balances accuracy with computational efficiency. Additionally, our approach allows for flexibility in adjusting the weightings between entropy and MNN, tailoring the evaluation for different objectives. Through a series of experiments on various LLMs, we demonstrate the robustness and efficacy of our method, offering deeper insights into model performance. This work contributes to the ongoing development of LLM evaluation and opens avenues for future innovations in model assessment techniques.
- Abstract(参考訳): 大規模言語モデル(LLM)が進歩を続けるにつれ、正確で効率的な評価指標の必要性が高まっている。
伝統的なアプローチは、情報的ではあるが、しばしば計算要求と解釈可能性の制限に直面している。
本稿では,共分散行列から導出されるエントロピーとマトリックス核ノルム(MNN)の2つの確立した手法を統合するハイブリッド評価手法を提案する。
我々の手法はLLMから隠れ状態の正規化から始まり、これらの表現から共分散行列とMNNを計算する。
さらに、共分散行列のエントロピーを計算し、モデルの出力の不確実性と冗長性を捉える。
これらの指標を合成スコアに組み合わせることで、精度と計算効率のバランスをとる総合的な評価フレームワークを提供する。
さらに,本手法では,エントロピーとMNN間の重み付けを柔軟に調整し,異なる目的に対する評価を調整できる。
各種LLMに関する一連の実験を通じて,本手法の堅牢性と有効性を示し,モデル性能に関する深い知見を提供する。
この研究は、LLM評価の継続的な発展に寄与し、モデルアセスメント技術における将来のイノベーションへの道を開く。
関連論文リスト
- Large Language Model Evaluation via Matrix Nuclear-Norm [11.878496378814045]
本稿では,大規模言語モデル(LLM)のデータ圧縮精度を定量化するための指標として,マトリックス核ノルムを紹介する。
さらに、(L_1,2text-norm )を用いて核ノルムを近似することにより、モデルの情報圧縮能力を効果的に評価できる。
マトリックス核ノームは、CEREBRAS-GPTモデルにおいて、サイズが111Mから6.7Bに増加するにつれて、マトリックスエントロピーの8倍から24倍の速度を達成する。
論文 参考訳(メタデータ) (2024-10-14T16:15:57Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - Computational Tradeoffs of Optimization-Based Bound Tightening in ReLU
Networks [4.01907644010256]
ニューラルネットワークをRectified Linear Unit(ReLU)アクティベーションで表現するMILP(Mixed-Integer Linear Programming)モデルは、ここ10年で急速に普及している。
これにより、MILP技術を用いて、テストまたはストレス・サービヘイビアを行い、トレーニングを逆向きに改善し、予測力を活かした最適化モデルに組み込むことが可能になった。
ネットワーク構造、正規化、ラウンドリングの影響に基づき、これらのモデルを実装するためのガイドラインを提供する。
論文 参考訳(メタデータ) (2023-12-27T19:32:59Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
我々は高次元回帰問題におけるユニタリネットワーク(PPOU-Net)モデルの分割について検討する。
本稿では適応次元の減少に着目した一般的な枠組みを提案する。
PPOU-Netsは、数値実験において、同等の大きさのベースライン完全接続ニューラルネットワークを一貫して上回っている。
論文 参考訳(メタデータ) (2022-10-06T06:01:36Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
マルコフ決定過程(MDP)における次元性の呪いに、低ランク表現を利用することで対処することが一般的である。
本稿では,効率的な表現学習を可能にしつつ,正規化を自動的に保証する線形MDPの代替的定義について考察する。
いくつかのベンチマークにおいて、既存の最先端モデルベースおよびモデルフリーアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-14T18:18:02Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Investigating Methods to Improve Language Model Integration for
Attention-based Encoder-Decoder ASR Models [107.86965028729517]
注意ベースのエンコーダデコーダ(AED)モデルは、トレーニング転写から暗黙的な内部言語モデル(ILM)を学ぶ。
AEDモデルから直接ILMを推定する新しい手法をいくつか提案する。
論文 参考訳(メタデータ) (2021-04-12T15:16:03Z) - Estimating Model Uncertainty of Neural Networks in Sparse Information
Form [39.553268191681376]
ディープニューラルネットワーク(DNN)におけるモデル不確実性のスパース表現について述べる。
我々の研究の重要な洞察は、情報行列はそのスペクトルにおいてスパースである傾向があることである。
DNNにおけるモデル不確実性を表すために,情報形式が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-06-20T18:09:59Z) - Variational Model-based Policy Optimization [34.80171122943031]
モデルベース強化学習(RL)アルゴリズムにより、実システムとの相互作用から得られたデータとモデル生成データを組み合わせ、RLにおけるデータ効率問題を緩和する。
本稿では,ログライクリフのログライクリフの変動的下界としての目的関数を提案し,モデルとポリシーを共同で学習し,改善する。
多くの連続制御タスクに関する実験により、モデルベース(Eステップ)アルゴリズムはより複雑であるにもかかわらず、浮動小数点数モデルベースポリシー最適化(VMBPO)と呼ばれるアルゴリズムの方がよりサンプリング効率が高いことが示された。
論文 参考訳(メタデータ) (2020-06-09T18:30:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。