Bin-Conditional Conformal Prediction of Fatalities from Armed Conflict
- URL: http://arxiv.org/abs/2410.14507v1
- Date: Fri, 18 Oct 2024 14:41:42 GMT
- Title: Bin-Conditional Conformal Prediction of Fatalities from Armed Conflict
- Authors: David Randahl, Jonathan P. Williams, HÃ¥vard Hegre,
- Abstract summary: We introduce a novel extension to conformal prediction algorithm which we call bin-conditional conformal prediction.
This method allows users to obtain individual-level prediction intervals for any arbitrary prediction model.
We apply the bin-conditional conformal prediction algorithm to forecast fatalities from armed conflict.
- Score: 0.5312303275762104
- License:
- Abstract: Forecasting of armed conflicts is an important area of research that has the potential to save lives and prevent suffering. However, most existing forecasting models provide only point predictions without any individual-level uncertainty estimates. In this paper, we introduce a novel extension to conformal prediction algorithm which we call bin-conditional conformal prediction. This method allows users to obtain individual-level prediction intervals for any arbitrary prediction model while maintaining a specific level of coverage across user-defined ranges of values. We apply the bin-conditional conformal prediction algorithm to forecast fatalities from armed conflict. Our results demonstrate that the method provides well-calibrated uncertainty estimates for the predicted number of fatalities. Compared to standard conformal prediction, the bin-conditional method outperforms offers improved calibration of coverage rates across different values of the outcome, but at the cost of wider prediction intervals.
Related papers
- Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
Conformal Prediction has emerged as a promising method to pair machine learning models with prediction intervals.
We propose a method to estimate the uncertainty of each sample by calculating the variance obtained from a Deep Regression Forest.
arXiv Detail & Related papers (2024-02-21T19:09:53Z) - On the Expected Size of Conformal Prediction Sets [24.161372736642157]
We theoretically quantify the expected size of the prediction sets under the split conformal prediction framework.
As this precise formulation cannot usually be calculated directly, we derive point estimates and high-probability bounds interval.
We corroborate the efficacy of our results with experiments on real-world datasets for both regression and classification problems.
arXiv Detail & Related papers (2023-06-12T17:22:57Z) - Post-selection Inference for Conformal Prediction: Trading off Coverage
for Precision [0.0]
Traditionally, conformal prediction inference requires a data-independent specification of miscoverage level.
We develop simultaneous conformal inference to account for data-dependent miscoverage levels.
arXiv Detail & Related papers (2023-04-12T20:56:43Z) - Comparison of Uncertainty Quantification with Deep Learning in Time
Series Regression [7.6146285961466]
In this paper, different uncertainty estimation methods are compared to forecast meteorological time series data.
Results show how each uncertainty estimation method performs on the forecasting task.
arXiv Detail & Related papers (2022-11-11T14:29:13Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
split conformal prediction represents a promising avenue to obtain finite-sample guarantees under minimal distribution-free assumptions.
We highlight the connection between split conformal prediction and classical tolerance predictors developed in the 1940s.
arXiv Detail & Related papers (2022-10-26T14:12:24Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.