Nearly query-optimal classical shadow estimation of unitary channels
- URL: http://arxiv.org/abs/2410.14538v1
- Date: Fri, 18 Oct 2024 15:25:40 GMT
- Title: Nearly query-optimal classical shadow estimation of unitary channels
- Authors: Zihao Li, Changhao Yi, You Zhou, Huangjun Zhu,
- Abstract summary: Classical shadow estimation is a powerful tool for learning properties of quantum states and quantum processes.
By querying an unknown unitary channel in quantum experiments, the goal is to learn a classical description of $mathcalU$.
Our protocol can also be applied to simultaneously predict many non-linear properties such as out-of-time-ordered correlators.
- Score: 6.715668514390893
- License:
- Abstract: Classical shadow estimation (CSE) is a powerful tool for learning properties of quantum states and quantum processes. Here we consider the CSE task for quantum unitary channels. By querying an unknown unitary channel $\mathcal{U}$ multiple times in quantum experiments, the goal is to learn a classical description of $\mathcal{U}$ such that one can later use it to accurately predict many different linear properties of the channel, i.e., the expectation values of arbitrary observables measured on the output of $\mathcal{U}$ upon arbitrary input states. Based on collective measurements on multiple systems, we propose a query efficient protocol for this task, whose query complexity achieves a quadratic advantage over previous best approach for this problem, and almost saturates the information-theoretic lower bound. To enhance practicality, we also present a variant protocol using only single-copy measurements, which still offers better query performance than any previous protocols that do not use additional quantum memories. In addition to linear properties, our protocol can also be applied to simultaneously predict many non-linear properties such as out-of-time-ordered correlators. Given the importance of CSE, this work may represent a significant advance in the study of learning unitary channels.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Learning unitaries with quantum statistical queries [0.0]
We propose several algorithms for learning unitary operators from quantum statistical queries (QSQs)
Our methods hinge on a novel technique for estimating the Fourier mass of a unitary on a subset of Pauli strings with a single quantum statistical query.
We show that quantum statistical queries lead to an exponentially larger sample complexity for certain tasks, compared to separable measurements to the Choi-Jamiolkowski state.
arXiv Detail & Related papers (2023-10-03T17:56:07Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
Variational Quantum Algorithm (VQA) shows a gain of performance in balanced accuracy with the LDA technique.
Current quantum computers are noisy and have few qubits to test, making it difficult to demonstrate the current and potential quantum advantage of QML methods.
arXiv Detail & Related papers (2022-08-28T16:58:37Z) - Commutation simulator for open quantum dynamics [0.0]
We propose an innovative method to investigate directly the properties of a time-dependent density operator $hatrho(t)$.
We can directly compute the expectation value of the commutation relation and thus of the rate of change of $hatrho(t)$.
A simple but important example is demonstrated in the single-qubit case and we discuss extension of the method for practical quantum simulation with many qubits.
arXiv Detail & Related papers (2022-06-01T16:03:43Z) - Quantum variational learning for entanglement witnessing [0.0]
This work focuses on the potential implementation of quantum algorithms allowing to properly classify quantum states defined over a single register of $n$ qubits.
We exploit the notion of "entanglement witness", i.e., an operator whose expectation values allow to identify certain specific states as entangled.
We made use of Quantum Neural Networks (QNNs) in order to successfully learn how to reproduce the action of an entanglement witness.
arXiv Detail & Related papers (2022-05-20T20:14:28Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.