Continuous Wavelet Transformation and VGG16 Deep Neural Network for Stress Classification in PPG Signals
- URL: http://arxiv.org/abs/2410.14747v1
- Date: Thu, 17 Oct 2024 19:29:52 GMT
- Title: Continuous Wavelet Transformation and VGG16 Deep Neural Network for Stress Classification in PPG Signals
- Authors: Yasin Hasanpoor, Bahram Tarvirdizadeh, Khalil Alipour, Mohammad Ghamari,
- Abstract summary: Our research introduces a groundbreaking approach to stress classification through Photoplethysmogram signals.
By incorporating Continuous Wavelet Transformation (CWT) with the proven VGG16, our method enhances stress assessment accuracy and reliability.
- Score: 0.22499166814992436
- License:
- Abstract: Our research introduces a groundbreaking approach to stress classification through Photoplethysmogram (PPG) signals. By combining Continuous Wavelet Transformation (CWT) with the proven VGG16 classifier, our method enhances stress assessment accuracy and reliability. Previous studies highlighted the importance of physiological signal analysis, yet precise stress classification remains a challenge. Our approach addresses this by incorporating robust data preprocessing with a Kalman filter and a sophisticated neural network architecture. Experimental results showcase exceptional performance, achieving a maximum training accuracy of 98% and maintaining an impressive average training accuracy of 96% across diverse stress scenarios. These results demonstrate the practicality and promise of our method in advancing stress monitoring systems and stress alarm sensors, contributing significantly to stress classification.
Related papers
- Stress Assessment with Convolutional Neural Network Using PPG Signals [0.22499166814992436]
This research is focused on developing a novel technique to assess stressful events using raw PPG signals recorded by Empatica E4 sensor.
An adaptive convolutional neural network (CNN) combined with Multilayer Perceptron (MLP) has been utilized to realize the detection of stressful events.
This research will use a dataset that is publicly available and named wearable stress and effect detection (WESAD)
arXiv Detail & Related papers (2024-10-16T06:24:16Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Context-Aware Stress Monitoring using Wearable and Mobile Technologies
in Everyday Settings [2.650926942973848]
We present a monitoring system that objectively tracks daily stress levels by utilizing both physiological and contextual data.
We propose a three-tier Internet-of-Things-based system architecture to address the challenges.
arXiv Detail & Related papers (2023-12-14T19:16:11Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
We explore objective prediction of stress levels in everyday settings based on heart rate (HR) and heart rate variability (HRV)
We present a layered system architecture for personalized stress monitoring that supports a tunable collection of data samples for labeling, and present a method for selecting informative samples from the stream of real-time data for labeling.
arXiv Detail & Related papers (2021-07-31T04:15:15Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - StressNet: Detecting Stress in Thermal Videos [10.453959171422147]
This paper presents a novel approach to obtaining physiological signals and classifying stress states from thermal video.
"StressNet" reconstructs the ISTI ( Initial Systolic Time Interval: a measure of change in cardiac sympathetic activity that is considered to be a quantitative index of stress humans.
A detailed evaluation demonstrates that StressNet estimated the ISTI signal with 95% accuracy and detect stress with average precision of 0.842.
arXiv Detail & Related papers (2020-11-18T20:47:23Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z) - Accurate Stress Assessment based on functional Near Infrared
Spectroscopy using Deep Learning Approach [0.0]
In this study, signals produced by functional Near-Infrared Spectroscopy (fNIRS) of the brain recorded from 10 healthy volunteers are employed to assess the stress induced by the Montreal Imaging Stress Task.
Experiment results showed that the trained fNIRS model performs stress classification by achieving 88.52 -+ 0.77% accuracy.
Its low computational cost opens up the possibility to be applied in real-time stress assessment.
arXiv Detail & Related papers (2020-02-14T23:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.