論文の概要: Mind the Gap: Foundation Models and the Covert Proliferation of Military Intelligence, Surveillance, and Targeting
- arxiv url: http://arxiv.org/abs/2410.14831v1
- Date: Fri, 18 Oct 2024 19:04:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:43.852582
- Title: Mind the Gap: Foundation Models and the Covert Proliferation of Military Intelligence, Surveillance, and Targeting
- Title(参考訳): マインド・ザ・ギャップ(Mind the Gap) : 基礎モデルと軍事情報・監視・標的の包括的拡散
- Authors: Heidy Khlaaf, Sarah Myers West, Meredith Whittaker,
- Abstract要約: 我々は、個人識別可能な情報がISTAR能力に寄与するのを防ぐことができないことが、敵による軍事AI技術の使用と普及に繋がることを示した。
我々は、軍事システムを確保し、AI兵器の普及を制限するためには、軍用AIシステムと個人データを商業基盤モデルから絶縁する必要があると結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Discussions regarding the dual use of foundation models and the risks they pose have overwhelmingly focused on a narrow set of use cases and national security directives-in particular, how AI may enable the efficient construction of a class of systems referred to as CBRN: chemical, biological, radiological and nuclear weapons. The overwhelming focus on these hypothetical and narrow themes has occluded a much-needed conversation regarding present uses of AI for military systems, specifically ISTAR: intelligence, surveillance, target acquisition, and reconnaissance. These are the uses most grounded in actual deployments of AI that pose life-or-death stakes for civilians, where misuses and failures pose geopolitical consequences and military escalations. This is particularly underscored by novel proliferation risks specific to the widespread availability of commercial models and the lack of effective approaches that reliably prevent them from contributing to ISTAR capabilities. In this paper, we outline the significant national security concerns emanating from current and envisioned uses of commercial foundation models outside of CBRN contexts, and critique the narrowing of the policy debate that has resulted from a CBRN focus (e.g. compute thresholds, model weight release). We demonstrate that the inability to prevent personally identifiable information from contributing to ISTAR capabilities within commercial foundation models may lead to the use and proliferation of military AI technologies by adversaries. We also show how the usage of foundation models within military settings inherently expands the attack vectors of military systems and the defense infrastructures they interface with. We conclude that in order to secure military systems and limit the proliferation of AI armaments, it may be necessary to insulate military AI systems and personal data from commercial foundation models.
- Abstract(参考訳): 基礎モデルの二重利用とそれらが引き起こすリスクに関する議論は、狭義のユースケースと国家安全保障指令(特に、AIがCBRNと呼ばれるシステム(化学、生物学的、放射線学的、核兵器)の効率的な構築を可能にする方法について、圧倒的に焦点を当てている。
これらの仮説的、狭義のテーマに対する圧倒的な焦点は、現在の軍事システム、特に情報、監視、目標獲得、偵察におけるAIの使用に関する、待望の議論を排除している。
AIの実際の展開において最も根ざした用途は、悪用や失敗が地政学的な結果や軍事的エスカレーションをもたらす一般市民に生命や死の危険をもたらすものである。
これは特に、商用モデルの普及に特有な新たな増殖リスクと、ISTAR能力への貢献を確実に阻止する効果的なアプローチの欠如に起因している。
本稿では、CBRNの文脈外における商業基盤モデルの現在および想定された利用から生じる重要な国家安全保障上の懸念を概説し、CBRNの焦点(計算しきい値、モデルウェイトリリースなど)による政策論争の縮小を批判する。
商業基盤モデルにおけるISTAR機能への個人識別情報の寄与を防止できないことは、敵による軍事AI技術の使用と普及につながる可能性があることを実証する。
また、軍事システムにおける基礎モデルの利用は、本質的に軍事システムの攻撃ベクトルと、それらが接続する防衛インフラを拡大することを示す。
我々は、軍事システムを確保し、AI兵器の普及を制限するためには、軍用AIシステムと個人データを商業基盤モデルから絶縁する必要があると結論付けている。
関連論文リスト
- Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - The GPT Dilemma: Foundation Models and the Shadow of Dual-Use [0.0]
本稿では、基礎モデルの二重利用課題と、国際安全保障に影響を及ぼすリスクについて検討する。
本稿では,基礎モデルの開発サイクルにおいて,モデル入力,機能,システム利用事例,システム展開の4つの重要な要因を分析した。
本稿では、中距離原子力軍(INF)条約をケーススタディとして、関連するリスクを軽減するためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-07-29T22:36:27Z) - A Technological Perspective on Misuse of Available AI [41.94295877935867]
民間人工知能(AI)の悪意ある誤用は、国家や国際レベルでのセキュリティに深刻な脅威をもたらす可能性がある。
既存のオープンなAI技術が、いかに誤用されているかを示します。
我々は、政治的、デジタル的、物理的セキュリティを脅かす、潜在的に誤用されたAIの典型的なユースケースを3つ開発する。
論文 参考訳(メタデータ) (2024-03-22T16:30:58Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
政府や企業は、AIを管理する手段として計算を活用し始めている。
計算ベースのポリシーと技術は、これらの領域を補助する可能性があるが、実装の準備ができている点で大きなバリエーションがある。
プライバシーや経済的影響、権力の中央集権化といった分野において、ガバナンスの計算方法の素早い、あるいは不十分なアプローチは重大なリスクを伴います。
論文 参考訳(メタデータ) (2024-02-13T21:10:21Z) - Killer Apps: Low-Speed, Large-Scale AI Weapons [2.2899177316144943]
人工知能(AI)と機械学習(ML)の進歩は、戦争と安全保障における新たな課題と機会を提示する。
本稿では,AI兵器の概念,その展開,検出,潜在的な対策について検討する。
論文 参考訳(メタデータ) (2024-01-14T12:09:40Z) - Escalation Risks from Language Models in Military and Diplomatic
Decision-Making [0.0]
この研究は、シミュレーションされたウォーゲームにおいて、複数のAIエージェントの振る舞いを精査することを目的としている。
我々は,これらのエージェントによる行動のエスカレーションのリスクを評価するために,新たなウォーゲームシミュレーションとスコアリングフレームワークを設計する。
我々は、モデルが兵器追跡力学を発達させ、より大きな紛争、そして稀に核兵器の配備に至る傾向があることを観察する。
論文 参考訳(メタデータ) (2024-01-07T07:59:10Z) - A Call to Arms: AI Should be Critical for Social Media Analysis of
Conflict Zones [5.479613761646247]
本稿では、コンピュータビジョンを用いて、特定の武器システムとそれを用いた武装集団の署名を特定するための予備的、横断的な作業について述べる。
武器の配布方法を追跡するだけでなく、ウクライナの様々な種類の国家や非国家の軍事俳優がどの種類の武器を使用しているかを追跡する可能性がある。
このようなシステムは、人道支援や医療援助がもっとも必要となる場所を含む、リアルタイムでの紛争を理解するために最終的に使用できる。
論文 参考訳(メタデータ) (2023-11-01T19:49:32Z) - The Role of Large Language Models in the Recognition of Territorial
Sovereignty: An Analysis of the Construction of Legitimacy [67.44950222243865]
Google MapsやLarge Language Models (LLM)のような技術ツールは、しばしば公平で客観的であると見なされる。
我々は、クリミア、ウェストバンク、トランスニトリアの3つの論争領域の事例を、ウィキペディアの情報と国連の決議に対するChatGPTの反応を比較して強調する。
論文 参考訳(メタデータ) (2023-03-17T08:46:49Z) - 10 Security and Privacy Problems in Large Foundation Models [69.70602220716718]
事前トレーニングされたファンデーションモデルは、AIエコシステムの'オペレーティングシステム'のようなものです。
事前訓練されたファンデーションモデルのセキュリティやプライバシの問題は、AIエコシステムの単一障害点につながる。
本章では、事前訓練された基礎モデルのセキュリティとプライバシに関する10の基本的な問題について論じる。
論文 参考訳(メタデータ) (2021-10-28T21:45:53Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。