論文の概要: Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation
- arxiv url: http://arxiv.org/abs/2501.18416v1
- Date: Thu, 30 Jan 2025 15:14:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:28.076946
- Title: Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation
- Title(参考訳): 連邦軍用LLMにおける潜在的プロンプトインジェクション攻撃の探索とその軽減
- Authors: Youngjoon Lee, Taehyun Park, Yunho Lee, Jinu Gong, Joonhyuk Kang,
- Abstract要約: 大規模言語モデル(LLM)を開発するための軍事協力において,連邦学習(FL)がますます採用されている。
迅速なインジェクション攻撃-入力プロンプトの有害な操作は、運用上のセキュリティを損なう恐れがあり、意思決定を妨害し、同盟国間の信頼を損なう可能性のある、新たな脅威を規定する。
我々は,技術と政策の両面を取り入れた人間とAIの協調的な枠組みを提案する。
- 参考スコア(独自算出の注目度): 3.0175628677371935
- License:
- Abstract: Federated Learning (FL) is increasingly being adopted in military collaborations to develop Large Language Models (LLMs) while preserving data sovereignty. However, prompt injection attacks-malicious manipulations of input prompts-pose new threats that may undermine operational security, disrupt decision-making, and erode trust among allies. This perspective paper highlights four potential vulnerabilities in federated military LLMs: secret data leakage, free-rider exploitation, system disruption, and misinformation spread. To address these potential risks, we propose a human-AI collaborative framework that introduces both technical and policy countermeasures. On the technical side, our framework uses red/blue team wargaming and quality assurance to detect and mitigate adversarial behaviors of shared LLM weights. On the policy side, it promotes joint AI-human policy development and verification of security protocols. Our findings will guide future research and emphasize proactive strategies for emerging military contexts.
- Abstract(参考訳): 連邦学習(FL)は、データの主権を維持しながら、大規模言語モデル(LLM)を開発するための軍事協力において、ますます採用されている。
しかし、迅速なインジェクション攻撃-入力プロンプトの有害な操作は、運用上のセキュリティを損なう可能性のある新たな脅威、意思決定を妨害し、同盟国間の信頼を損なう可能性がある。
このパースペクティブペーパーは、秘密データ漏洩、フリーライダのエクスプロイト、システム破壊、誤情報拡散の4つの潜在的な脆弱性を浮き彫りにしている。
これらのリスクに対処するため,技術と政策の両面での協調的な枠組みを提案する。
技術的には、我々のフレームワークは赤と青のチームウォーガミングと品質保証を使用して、共有LLM重みの敵行動を検出し、緩和します。
政策面では、AIと人間の共同政策開発とセキュリティプロトコルの検証を促進する。
我々の発見は今後の研究の指針となり、新たな軍事状況に対する積極的な戦略を強調します。
関連論文リスト
- Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
大規模言語モデル(LLM)は、自然言語の理解と生成を前進させることで、人工知能を変革した。
これらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、かなりの脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
論文 参考訳(メタデータ) (2024-10-20T00:00:56Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - On Large Language Models in National Security Applications [2.7624021966289605]
2023年初頭のGPT-4の圧倒的な成功は、国家安全保障を含む様々な分野にわたる大規模言語モデル(LLM)の変革の可能性を強調した。
本稿では,情報処理,意思決定,運用効率に革命をもたらす可能性を分析し,国家安全保障におけるLLM統合の意義について考察する。
論文 参考訳(メタデータ) (2024-07-03T18:53:22Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Large language models in 6G security: challenges and opportunities [5.073128025996496]
我々は,潜在的敵の立場から,Large Language Models(LLMs)のセキュリティ面に注目した。
これには包括的脅威分類の開発が含まれ、様々な敵の行動を分類する。
また、我々の研究は、防衛チーム(ブルーチームとしても知られる)によるサイバーセキュリティ活動にLLMがどのように統合されるかに焦点を当てます。
論文 参考訳(メタデータ) (2024-03-18T20:39:34Z) - SUB-PLAY: Adversarial Policies against Partially Observed Multi-Agent Reinforcement Learning Systems [40.91476827978885]
攻撃者は被害者の脆弱性を迅速に悪用し、特定のタスクの失敗につながる敵のポリシーを生成する。
部分観測可能性の影響を軽減するために,複数のサブゲームを構築するという概念を取り入れた新しいブラックボックス攻撃(SUB-PLAY)を提案する。
我々は,敵対的政策によるセキュリティの脅威を軽減するための3つの防衛策を評価する。
論文 参考訳(メタデータ) (2024-02-06T06:18:16Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
多くのマルチエージェント強化学習(MARL)では,エージェントが情報を共有し,適切な判断を下す上でコミュニケーションが重要である。
しかし、ノイズや潜在的な攻撃者が存在する現実世界のアプリケーションに訓練された通信エージェントを配置すると、通信ベースのポリシーの安全性は過小評価されている深刻な問題となる。
本研究では,攻撃者が任意の$CfracN-12$エージェントから被害者エージェントへの通信を任意に変更できる,$N$エージェントを備えた環境を検討する。
論文 参考訳(メタデータ) (2022-06-21T07:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。