論文の概要: Dual-Technique Privacy & Security Analysis for E-Commerce Websites Through Automated and Manual Implementation
- arxiv url: http://arxiv.org/abs/2410.14960v1
- Date: Sat, 19 Oct 2024 03:25:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:13.912360
- Title: Dual-Technique Privacy & Security Analysis for E-Commerce Websites Through Automated and Manual Implementation
- Title(参考訳): 自動手動実装による電子商取引ウェブサイトの二重技術プライバシとセキュリティ分析
- Authors: Urvashi Kishnani, Sanchari Das,
- Abstract要約: 38.5%のWebサイトがセッション毎に50以上のクッキーをデプロイしており、その多くは不必要または不明瞭な機能として分類された。
手動による評価では、必須の多要素認証や違反通知プロトコルの欠如など、標準的なセキュリティプラクティスにおける重大なギャップが明らかになった。
これらの知見に基づき、プライバシポリシの改善、クッキー利用の透明性の向上、より強力な認証プロトコルの実装を推奨する。
- 参考スコア(独自算出の注目度): 2.7039386580759666
- License:
- Abstract: As e-commerce continues to expand, the urgency for stronger privacy and security measures becomes increasingly critical, particularly on platforms frequented by younger users who are often less aware of potential risks. In our analysis of 90 US-based e-commerce websites, we employed a dual-technique approach, combining automated tools with manual evaluations. Tools like CookieServe and PrivacyCheck revealed that 38.5% of the websites deployed over 50 cookies per session, many of which were categorized as unnecessary or unclear in function, posing significant risks to users' Personally Identifiable Information (PII). Our manual assessment further uncovered critical gaps in standard security practices, including the absence of mandatory multi-factor authentication (MFA) and breach notification protocols. Additionally, we observed inadequate input validation, which compromises the integrity of user data and transactions. Based on these findings, we recommend targeted improvements to privacy policies, enhanced transparency in cookie usage, and the implementation of stronger authentication protocols. These measures are essential for ensuring compliance with CCPA and COPPA, thereby fostering more secure online environments, particularly for younger users.
- Abstract(参考訳): 電子商取引が拡大するにつれて、より強力なプライバシーとセキュリティ対策の緊急性はますます重要になる。
合衆国の90のeコマースWebサイトの分析では、自動ツールと手作業による評価を組み合わせたデュアルテクニクなアプローチを採用しました。
CookieServeやPrivacyCheckのようなツールは、セッション毎に50以上のクッキーをデプロイしているウェブサイトの38.5%を明らかにした。
手動による評価により,MFA(強制的多要素認証)や違反通知プロトコルの欠如など,標準的なセキュリティプラクティスにおける重大なギャップが明らかになった。
さらに,ユーザデータとトランザクションの整合性を損なう入力検証が不十分であることも確認した。
これらの知見に基づき、プライバシーポリシーの改善、クッキー利用の透明性の向上、より強力な認証プロトコルの実装を目標とすることを推奨する。
これらの措置は、CCPAとCOPPAのコンプライアンスを確保するために不可欠であり、特に若いユーザーにとって、より安全なオンライン環境を育む。
関連論文リスト
- Privacy-Enhanced Adaptive Authentication: User Profiling with Privacy Guarantees [0.6554326244334866]
本稿では,プライバシ強化型アダプティブ認証プロトコルを提案する。
リアルタイムリスクアセスメントに基づいて認証要求を動的に調整する。
CCPAなどのデータ保護規則を遵守することにより,セキュリティを向上するだけでなく,ユーザの信頼も向上する。
論文 参考訳(メタデータ) (2024-10-27T19:11:33Z) - Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning [17.45950557331482]
フェデレートラーニングは、多様なデータに対するグローバルモデルの協調学習を可能にし、データのローカリティを保ち、ユーザデータを中央サーバに転送する必要をなくす。
セキュアアグリゲーションプロトコルは、ユーザ更新をマスク/暗号化し、中央サーバがマスキングされた情報を集約できるように設計されている。
MicroSecAgg (PoPETS 2024) は,既存のアプローチの通信複雑性を緩和することを目的とした,単一のサーバセキュアアグリゲーションプロトコルを提案する。
論文 参考訳(メタデータ) (2024-10-13T00:06:03Z) - Excavating Vulnerabilities Lurking in Multi-Factor Authentication Protocols: A Systematic Security Analysis [2.729532849571912]
単一要素認証(SFA)プロトコルは、しばしばサイドチャネルや他の攻撃技術によってバイパスされる。
この問題を軽減するため,近年,MFAプロトコルが広く採用されている。
論文 参考訳(メタデータ) (2024-07-29T23:37:38Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
フェデレーション学習におけるSecAggのプライバシーへの影響について検討する。
SecAggは、単一のトレーニングラウンドであっても、メンバシップ推論攻撃に対して弱いプライバシを提供します。
以上の結果から,ノイズ注入などの付加的なプライバシー強化機構の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-03-26T15:07:58Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - Do Software Security Practices Yield Fewer Vulnerabilities? [6.6840472845873276]
本研究の目的は、専門家や研究者がどのセキュリティプラクティスを採用するべきかを判断するのを支援することである。
4つのセキュリティプラクティスが、脆弱性数に影響を与える最も重要なプラクティスでした。
パッケージの総セキュリティスコアが増加するにつれて、報告された脆弱性の数は減少した。
論文 参考訳(メタデータ) (2022-10-20T20:04:02Z) - mPSAuth: Privacy-Preserving and Scalable Authentication for Mobile Web
Applications [0.0]
mPSAuthは、ユーザの振る舞いを反映したさまざまなデータソースを継続的に追跡し、現在のユーザが正当である可能性を推定するアプローチである。
我々はmPSAuthが暗号化と通信のオーバーヘッドを低く抑えながら高い精度を提供できることを示した。
論文 参考訳(メタデータ) (2022-10-07T12:49:34Z) - Secure Byzantine-Robust Machine Learning [61.03711813598128]
本稿では,Byzantine-robustnessとByzantine-robustnessの両方を提供するセキュアな2サーバプロトコルを提案する。
さらに、このプロトコルは通信効率が高く、フォールトトレラントであり、局所的な差分プライバシーを享受する。
論文 参考訳(メタデータ) (2020-06-08T16:55:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。