論文の概要: MCCoder: Streamlining Motion Control with LLM-Assisted Code Generation and Rigorous Verification
- arxiv url: http://arxiv.org/abs/2410.15154v1
- Date: Sat, 19 Oct 2024 16:46:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:37.934988
- Title: MCCoder: Streamlining Motion Control with LLM-Assisted Code Generation and Rigorous Verification
- Title(参考訳): MCCoder:LLM支援符号生成と厳密な検証によるストリームライニング動作制御
- Authors: Yin Li, Liangwei Wang, Shiyuan Piao, Boo-Ho Yang, Ziyue Li, Wei Zeng, Fugee Tsung,
- Abstract要約: 本稿では,複雑な動作制御タスクに対処するコードを生成するためのLCM方式MCCoderを紹介する。
MCCoderは、マルチタスク分解、ハイブリッド検索拡張生成(RAG)、およびプライベートモーションライブラリによる自己補正によるコード生成を強化する。
詳細なトラジェクトリデータをロギングしてデータ検証をサポートし、シミュレーションとプロットを提供し、ユーザは生成されたコードの正確性を評価することができる。
- 参考スコア(独自算出の注目度): 15.438969500630677
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have shown considerable promise in code generation. However, the automation sector, especially in motion control, continues to rely heavily on manual programming due to the complexity of tasks and critical safety considerations. In this domain, incorrect code execution can pose risks to both machinery and personnel, necessitating specialized expertise. To address these challenges, we introduce MCCoder, an LLM-powered system designed to generate code that addresses complex motion control tasks, with integrated soft-motion data verification. MCCoder enhances code generation through multitask decomposition, hybrid retrieval-augmented generation (RAG), and self-correction with a private motion library. Moreover, it supports data verification by logging detailed trajectory data and providing simulations and plots, allowing users to assess the accuracy of the generated code and bolstering confidence in LLM-based programming. To ensure robust validation, we propose MCEVAL, an evaluation dataset with metrics tailored to motion control tasks of varying difficulties. Experiments indicate that MCCoder improves performance by 11.61% overall and by 66.12% on complex tasks in MCEVAL dataset compared with base models with naive RAG. This system and dataset aim to facilitate the application of code generation in automation settings with strict safety requirements. MCCoder is publicly available at https://github.com/MCCodeAI/MCCoder.
- Abstract(参考訳): 大規模言語モデル(LLM)はコード生成においてかなりの可能性を示しています。
しかし、自動化分野、特にモーションコントロール分野は、タスクの複雑さと重要な安全性の考慮により、手動プログラミングに大きく依存し続けている。
このドメインでは、誤ったコード実行は機械と人員の両方にリスクをもたらし、専門的な専門知識を必要とします。
これらの課題に対処するために,複雑な動作制御タスクに対処するコードを生成するためのLCM方式であるMCCoderを導入し,ソフトモーションデータ検証を統合した。
MCCoderは、マルチタスク分解、ハイブリッド検索拡張生成(RAG)、およびプライベートモーションライブラリによる自己補正によるコード生成を強化する。
さらに、詳細なトラジェクトリデータをロギングし、シミュレーションとプロットを提供することでデータ検証をサポートし、ユーザが生成されたコードの正確性を評価し、LLMベースのプログラミングの信頼性を高めることができる。
頑健な検証を実現するため,様々な困難を伴う動作制御タスクに適したメトリクスを持つ評価データセットMCEVALを提案する。
実験の結果、MCCoderはパフォーマンスを11.61%改善し、MCEVALデータセットの複雑なタスクでは66.12%向上した。
このシステムとデータセットは、厳格な安全性要件を持つ自動化設定におけるコード生成の応用を容易にすることを目的としている。
MCCoderはhttps://github.com/MCCodeAI/MCCoder.comで公開されている。
関連論文リスト
- Perceiving, Reasoning, Adapting: A Dual-Layer Framework for VLM-Guided Precision Robotic Manipulation [2.434849352801735]
VLM(Vision-Language Models)は、ロボット操作において顕著な可能性を示す。
しかし、複雑な微調整タスクを高速かつ高精度で実行する際の課題は継続する。
本稿では,ロボットの高速かつ高精度かつ誤り訂正可能な微調整を可能にするプログレッシブVLM計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-07T00:55:42Z) - Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection [56.66677293607114]
オープンセットのリアクティブかつアクティブな障害検出のためのCode-as-Monitor(CaM)を提案する。
モニタリングの精度と効率を高めるために,制約関連エンティティを抽象化する制約要素を導入する。
実験により、CaMは28.7%高い成功率を達成し、厳しい乱れの下で実行時間を31.8%短縮することが示された。
論文 参考訳(メタデータ) (2024-12-05T18:58:27Z) - 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT)は、自律運転やロボットセンシングのようなインテリジェントなシステムに不可欠である。
本稿では,学習可能なカルマンフィルタを移動モジュールに導入するGRUベースのMOT法を提案する。
このアプローチは、データ駆動学習を通じてオブジェクトの動き特性を学習することができ、手動モデル設計やモデルエラーを回避することができる。
論文 参考訳(メタデータ) (2024-11-13T08:34:07Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - MaCTG: Multi-Agent Collaborative Thought Graph for Automatic Programming [10.461509044478278]
MaCTG (MultiAgent Collaborative Thought Graph) は動的グラフ構造を用いる新しいマルチエージェントフレームワークである。
プログラム要求に基づいてエージェントロールを自律的に割り当て、タスクの分散を動的に洗練し、プロジェクトレベルのコードを体系的に検証し統合する。
MaCTGは既存のマルチエージェントフレームワークと比較して運用コストを89.09%削減した。
論文 参考訳(メタデータ) (2024-10-25T01:52:15Z) - Agents4PLC: Automating Closed-loop PLC Code Generation and Verification in Industrial Control Systems using LLM-based Agents [27.097029139195943]
Agents4PLCは、PLCコード生成とコードレベルの検証を自動化する新しいフレームワークである。
まず、検証可能なPLCコード生成領域のベンチマークを作成する。
そして、自然言語の要件から、人間によって記述された形式仕様と参照PLCコードへ移行する。
論文 参考訳(メタデータ) (2024-10-18T06:51:13Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - An Empirical Study on Self-correcting Large Language Models for Data Science Code Generation [1.335664823620186]
大規模言語モデル(LLM)は最近、ソフトウェア工学のタスクに多くの応用を進歩させた。
CoT-SelfEvolveは、自己修正プロセスを通じて、反復的かつ自動的にコードを洗練する。
論文 参考訳(メタデータ) (2024-08-28T09:19:09Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - MoTCoder: Elevating Large Language Models with Modular of Thought for Challenging Programming Tasks [50.61968901704187]
本稿では,タスクを論理的なサブタスクとサブモジュールに分解するためのMoT命令チューニングフレームワークを提案する。
調査の結果,MoTCoderはサブモジュールの栽培と利用を通じて,生成したソリューションのモジュラリティと正しさの両方を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-12-26T08:49:57Z) - TLControl: Trajectory and Language Control for Human Motion Synthesis [68.09806223962323]
本稿では,人間のリアルな動き合成のための新しい手法であるTLControlを提案する。
低レベルのTrajectoryと高レベルのLanguage semanticsコントロールが組み込まれている。
インタラクティブで高品質なアニメーション生成には実用的である。
論文 参考訳(メタデータ) (2023-11-28T18:54:16Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
本稿では,SeCoT というコードの意味情報を抽出する "Semantic Chain-of-Thought" 手法を提案する。
本研究では,SeCoTが最先端の性能を実現し,大規模モデルやコード生成の可能性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-16T05:09:58Z) - Controllable Text Generation with Residual Memory Transformer [4.9329649616940205]
任意の時間ステップでCLMを生成するための,非侵襲的で軽量な制御プラグインを提案する。
提案されているプラグイン、すなわちResidual Memory Transformer (RMT)は、任意の種類の制御条件を受け入れることができるエンコーダとデコーダのセットアップを備えている。
各種制御タスクにおいて, 自動評価と人的評価の両面で, 広範囲な実験が実施されている。
論文 参考訳(メタデータ) (2023-09-28T08:13:33Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Multi-Scale Control Signal-Aware Transformer for Motion Synthesis
without Phase [72.01862340497314]
マルチスケール制御信号認識変換器(MCS-T)を提案する。
MCS-Tは補助情報を用いてメソッドが生成した動作に匹敵する動作をうまく生成できる。
論文 参考訳(メタデータ) (2023-03-03T02:56:44Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。