論文の概要: Conditional Prediction ROC Bands for Graph Classification
- arxiv url: http://arxiv.org/abs/2410.15239v1
- Date: Sun, 20 Oct 2024 00:44:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:00.316636
- Title: Conditional Prediction ROC Bands for Graph Classification
- Title(参考訳): グラフ分類のための条件予測ROCバンド
- Authors: Yujia Wu, Bo Yang, Elynn Chen, Yuzhou Chen, Zheshi Zheng,
- Abstract要約: 予測ROC(CP-ROC)バンドは、RCC曲線の不確実性定量化と、テストデータの分布シフトに対するロバスト性を提供する。
CP-ROCを局所交換性条件下で統計的に保証する。
これは、テストグラフ分布がトレーニングデータと異なる場合の信頼性を確保するため、非イド設定下でのROC曲線の不確実性に対処する。
- 参考スコア(独自算出の注目度): 14.222892103838165
- License:
- Abstract: Graph classification in medical imaging and drug discovery requires accuracy and robust uncertainty quantification. To address this need, we introduce Conditional Prediction ROC (CP-ROC) bands, offering uncertainty quantification for ROC curves and robustness to distributional shifts in test data. Although developed for Tensorized Graph Neural Networks (TGNNs), CP-ROC is adaptable to general Graph Neural Networks (GNNs) and other machine learning models. We establish statistically guaranteed coverage for CP-ROC under a local exchangeability condition. This addresses uncertainty challenges for ROC curves under non-iid setting, ensuring reliability when test graph distributions differ from training data. Empirically, to establish local exchangeability for TGNNs, we introduce a data-driven approach to construct local calibration sets for graphs. Comprehensive evaluations show that CP-ROC significantly improves prediction reliability across diverse tasks. This method enhances uncertainty quantification efficiency and reliability for ROC curves, proving valuable for real-world applications with non-iid objects.
- Abstract(参考訳): 医用画像と薬物発見におけるグラフ分類には、精度と堅牢な不確実性定量化が必要である。
このニーズに対処するために、条件付き予測ROC(CP-ROC)バンドを導入し、RCC曲線の不確かさの定量化と、テストデータの分散シフトに対するロバスト性を提供する。
TGNN(Tensorized Graph Neural Networks)のために開発されたが、CP-ROCは一般グラフニューラルネットワーク(GNN)や他の機械学習モデルに適応可能である。
CP-ROCを局所交換性条件下で統計的に保証する。
これは、テストグラフ分布がトレーニングデータと異なる場合の信頼性を確保するため、非イド設定下でのROC曲線の不確実性に対処する。
実験的に,TGNNの局所的な交換性を確立するために,グラフの局所的なキャリブレーションセットを構築するためのデータ駆動型アプローチを導入する。
総合評価の結果,CP-ROCは多種多様なタスクにおける予測信頼性を著しく向上させることがわかった。
この手法は, ROC曲線の不確実性定量化効率と信頼性を高め, 非イドオブジェクトを用いた実世界の応用に有用であることを示す。
関連論文リスト
- Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information [2.404163279345609]
本研究は,連合グラフ学習へのコンフォーマル予測の適用性を拡張した。
分散サブグラフにおけるリンク不足問題に対処し、CPセットサイズに対する悪影響を最小限に抑える。
本稿では,欠落したデータに対する負の影響を軽減するために,変分オートエンコーダに基づく近隣住民の再構築手法を提案する。
論文 参考訳(メタデータ) (2024-10-17T20:22:25Z) - Adapting Conformal Prediction to Distribution Shifts Without Labels [16.478151550456804]
コンフォーマル予測(CP)により、機械学習モデルは、保証されたカバレッジ率で予測セットを出力できる。
我々の目標は、テストドメインからのラベルなしデータのみを使用して、CP生成予測セットの品質を改善することです。
これは、未ラベルテストデータに対するベースモデルの不確実性に応じてCPのスコア関数を調整する、ECP と EACP と呼ばれる2つの新しい手法によって達成される。
論文 参考訳(メタデータ) (2024-06-03T15:16:02Z) - Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの結果を予測する強力なツールとして登場した。
有効性にもかかわらず、GNNは堅牢な不確実性推定を提供する能力に制限がある。
本稿では,GNNに対する条件シフトロバスト(CondSR)の共形予測を提案する。
論文 参考訳(メタデータ) (2024-05-20T11:47:31Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
本稿では,予測性能の異なる相補的な側面に焦点をあてた診断グラフィックのトリチチを提案し,研究する。
信頼性図は校正に対処し、受信動作特性(ROC)曲線は識別能力を診断し、マーフィー図は全体的な予測性能と価値を視覚化する。
論文 参考訳(メタデータ) (2023-01-25T19:35:23Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。