論文の概要: LAC: Graph Contrastive Learning with Learnable Augmentation in Continuous Space
- arxiv url: http://arxiv.org/abs/2410.15355v1
- Date: Sun, 20 Oct 2024 10:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:16.222689
- Title: LAC: Graph Contrastive Learning with Learnable Augmentation in Continuous Space
- Title(参考訳): LAC: 継続的空間における学習可能な拡張によるグラフコントラスト学習
- Authors: Zhenyu Lin, Hongzheng Li, Yingxia Shao, Guanhua Ye, Yawen Li, Quanqing Xu,
- Abstract要約: 直交連続空間における学習可能なデータ拡張を伴うグラフコントラスト学習フレームワークであるLACを紹介する。
拡張中にグラフデータ中の代表情報をキャプチャするために,連続的なビューオーグメンタを導入する。
本稿ではInfoBalという情報理論の原理を提案し,それに対応する前提課題を提案する。
実験の結果,LACは最先端のフレームワークよりも優れていた。
- 参考スコア(独自算出の注目度): 16.26882307454389
- License:
- Abstract: Graph Contrastive Learning frameworks have demonstrated success in generating high-quality node representations. The existing research on efficient data augmentation methods and ideal pretext tasks for graph contrastive learning remains limited, resulting in suboptimal node representation in the unsupervised setting. In this paper, we introduce LAC, a graph contrastive learning framework with learnable data augmentation in an orthogonal continuous space. To capture the representative information in the graph data during augmentation, we introduce a continuous view augmenter, that applies both a masked topology augmentation module and a cross-channel feature augmentation module to adaptively augment the topological information and the feature information within an orthogonal continuous space, respectively. The orthogonal nature of continuous space ensures that the augmentation process avoids dimension collapse. To enhance the effectiveness of pretext tasks, we propose an information-theoretic principle named InfoBal and introduce corresponding pretext tasks. These tasks enable the continuous view augmenter to maintain consistency in the representative information across views while maximizing diversity between views, and allow the encoder to fully utilize the representative information in the unsupervised setting. Our experimental results show that LAC significantly outperforms the state-of-the-art frameworks.
- Abstract(参考訳): グラフ 対照的学習フレームワークは、高品質なノード表現の生成に成功した。
グラフコントラスト学習のための効率的なデータ拡張手法と理想的なプレテキストタスクに関する既存の研究は、まだ限られており、教師なし環境では、最適なノード表現が可能である。
本稿では,直交連続空間における学習可能なデータ拡張を伴うグラフコントラスト学習フレームワークであるLACを紹介する。
拡張中にグラフデータ内の代表情報をキャプチャするために,マスク付きトポロジ拡張モジュールとクロスチャネル機能拡張モジュールを併用して,直交連続空間内のトポロジ情報と特徴情報を適応的に拡張する連続ビュー拡張器を導入する。
連続空間の直交の性質は、拡大過程が次元の崩壊を避けることを保証する。
プリテキストタスクの有効性を高めるために,InfoBal という情報理論の原理を提案し,それに対応するプリテキストタスクを提案する。
これらのタスクは、ビュー間の多様性を最大化しながら、ビュー間の代表情報の一貫性を維持し、エンコーダが教師なし設定で代表情報の完全活用を可能にする。
実験の結果,LACは最先端のフレームワークよりも優れていた。
関連論文リスト
- Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation [19.419836274690816]
効率的な自己教師型学習を実現するための空間時空間グラフ学習モデル(GraphST)を提案する。
提案手法は, 重要な多視点自己教師情報の蒸留を自動化する, 対向的コントラスト学習パラダイムである。
実生活データセット上での様々な時空間予測タスクにおいて,提案手法の優位性を示す。
論文 参考訳(メタデータ) (2023-06-19T03:09:35Z) - Joint Data and Feature Augmentation for Self-Supervised Representation
Learning on Point Clouds [4.723757543677507]
ユークリッド空間におけるデータ拡張と特徴空間における特徴拡張を組み合わせた融合コントラスト学習フレームワークを提案する。
提案手法の伝達性を検証するため,広範囲な対象分類実験と対象部分分割実験を行う。
実験の結果,提案フレームワークは,自己指導型でポイントクラウド表現を学習する上で有効であることが示された。
論文 参考訳(メタデータ) (2022-11-02T14:58:03Z) - Adversarial Cross-View Disentangled Graph Contrastive Learning [30.97720522293301]
グラフデータから最小かつ十分な表現を学習するために,情報ボトルネックの原則に従う ACDGCL を導入する。
提案したモデルが,複数のベンチマークデータセット上でのグラフ分類タスクの最先端性より優れていることを実証的に実証した。
論文 参考訳(メタデータ) (2022-09-16T03:48:39Z) - COSTA: Covariance-Preserving Feature Augmentation for Graph Contrastive
Learning [64.78221638149276]
グラフ拡張によって得られるノードの埋め込みは、非常に偏りが強いことを示す。
入力空間におけるグラフの増大を調査する代わりに,隠れた特徴の増大を提案する。
COSTAによる機能拡張は,グラフ拡張に基づくモデルに比べて,同等/ベターな結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-09T18:46:38Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
本稿では,エンコーディング段階に空間情報を加えることで,対照的な目的と強いデータ拡張操作の間の学習の不整合を緩和する効果的な手法を提案する。
提案手法は,視覚表現の効率を向上し,自己指導型視覚表現学習の今後の研究を刺激する鍵となるメッセージを提供する。
論文 参考訳(メタデータ) (2020-11-19T16:26:25Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
半単純グラフ変分自動エンコーダを用いて,低次元グラフ潜在表現における高次統計量を取得する。
我々は、階層構造を示すグラフを効率的に表現するために、ポインケア埋め込みを通して潜在空間に双曲幾何学を組み込む。
論文 参考訳(メタデータ) (2020-10-31T05:48:34Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
本稿では,適応的拡張を用いた新しいグラフコントラスト表現学習法を提案する。
具体的には,ノードの集中度に基づく拡張スキームを設計し,重要な結合構造を明らかにする。
提案手法は,既存の最先端のベースラインを一貫して上回り,教師付きベースラインを超えている。
論文 参考訳(メタデータ) (2020-10-27T15:12:21Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。