A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators
- URL: http://arxiv.org/abs/2410.15361v1
- Date: Sun, 20 Oct 2024 11:14:51 GMT
- Title: A Novel Characterization of the Population Area Under the Risk Coverage Curve (AURC) and Rates of Finite Sample Estimators
- Authors: Han Zhou, Jordy Van Landeghem, Teodora Popordanoska, Matthew B. Blaschko,
- Abstract summary: We introduce a more straightforward representation of the population AURC, interpretable as a weighted risk function, and propose a Monte Carlo plug-in estimator.
We empirically show the effectiveness of this estimator on a comprehensive benchmark across multiple datasets.
- Score: 15.294324192338484
- License:
- Abstract: The selective classifier (SC) has garnered increasing interest in areas such as medical diagnostics, autonomous driving, and the justice system. The Area Under the Risk-Coverage Curve (AURC) has emerged as the foremost evaluation metric for assessing the performance of SC systems. In this work, we introduce a more straightforward representation of the population AURC, interpretable as a weighted risk function, and propose a Monte Carlo plug-in estimator applicable to finite sample scenarios. We demonstrate that our estimator is consistent and offers a low-bias estimation of the actual weights, with a tightly bounded mean squared error (MSE). We empirically show the effectiveness of this estimator on a comprehensive benchmark across multiple datasets, model architectures, and Confidence Score Functions (CSFs).
Related papers
- Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - A comparative study on feature selection for a risk prediction model for
colorectal cancer [0.0]
This work is focused on colorectal cancer, assessing several feature ranking algorithms in terms of performance for a set of risk prediction models.
A visual approach proposed in this work allows to see that the Neural Network-based wrapper ranking is the most unstable while the Random Forest is the most stable.
arXiv Detail & Related papers (2024-02-07T22:14:14Z) - Using representation balancing to learn conditional-average dose responses from clustered data [5.633848204699653]
Estimating a unit's responses to interventions with an associated dose is relevant in a variety of domains.
We show the impacts of clustered data on model performance and propose an estimator, CBRNet.
arXiv Detail & Related papers (2023-09-07T14:17:44Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
We propose and study a triptych of diagnostic graphics that focus on distinct and complementary aspects of forecast performance.
The reliability diagram addresses calibration, the receiver operating characteristic (ROC) curve diagnoses discrimination ability, and the Murphy diagram visualizes overall predictive performance and value.
arXiv Detail & Related papers (2023-01-25T19:35:23Z) - Orthogonal Series Estimation for the Ratio of Conditional Expectation
Functions [2.855485723554975]
This chapter develops the general framework for estimation and inference on conditional expectation functions (CEFR)
We derive the pointwise and uniform results for estimation and inference on CEFR, including the validity of the Gaussian bootstrap.
We apply the proposed method to estimate the causal effect of the 401(k) program on household assets.
arXiv Detail & Related papers (2022-12-26T13:01:17Z) - Off-Policy Risk Assessment in Markov Decision Processes [15.225153671736201]
We develop the first doubly robust (DR) estimator for the CDF of returns in Markov decision processes (MDPs)
This estimator enjoys significantly less variance and, when the model is well specified, achieves the Cramer-Rao variance lower bound.
We derive the first minimax lower bounds for off-policy CDF and risk estimation, which match our error bounds up to a constant factor.
arXiv Detail & Related papers (2022-09-21T15:40:59Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
We consider a popular risk measure in quantitative finance known as the Conditional Value at Risk (CVaR)
We explore the performance of a Thompson Sampling-based algorithm CVaR-TS under this risk measure.
arXiv Detail & Related papers (2020-11-16T15:53:22Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.