Multi-Layer Feature Fusion with Cross-Channel Attention-Based U-Net for Kidney Tumor Segmentation
- URL: http://arxiv.org/abs/2410.15472v2
- Date: Tue, 22 Oct 2024 02:59:51 GMT
- Title: Multi-Layer Feature Fusion with Cross-Channel Attention-Based U-Net for Kidney Tumor Segmentation
- Authors: Fnu Neha, Arvind K. Bansal,
- Abstract summary: U-Net based deep learning techniques are emerging as a promising approach for automated medical image segmentation.
We present an improved U-Net based model for end-to-end automated semantic segmentation of CT scan images to identify renal tumors.
- Score: 0.0
- License:
- Abstract: Renal tumors, especially renal cell carcinoma (RCC), show significant heterogeneity, posing challenges for diagnosis using radiology images such as MRI, echocardiograms, and CT scans. U-Net based deep learning techniques are emerging as a promising approach for automated medical image segmentation for minimally invasive diagnosis of renal tumors. However, current techniques need further improvements in accuracy to become clinically useful to radiologists. In this study, we present an improved U-Net based model for end-to-end automated semantic segmentation of CT scan images to identify renal tumors. The model uses residual connections across convolution layers, integrates a multi-layer feature fusion (MFF) and cross-channel attention (CCA) within encoder blocks, and incorporates skip connections augmented with additional information derived using MFF and CCA. We evaluated our model on the KiTS19 dataset, which contains data from 210 patients. For kidney segmentation, our model achieves a Dice Similarity Coefficient (DSC) of 0.97 and a Jaccard index (JI) of 0.95. For renal tumor segmentation, our model achieves a DSC of 0.96 and a JI of 0.91. Based on a comparison of available DSC scores, our model outperforms the current leading models.
Related papers
- Machine-agnostic Automated Lumbar MRI Segmentation using a Cascaded Model Based on Generative Neurons [0.22198209072577352]
We introduce a novel machine-agnostic approach for segmenting lumbar vertebrae and intervertebral discs from MRI images.
We capitalize on a unique dataset comprising images from 12 scanners and 34 subjects, enhanced through strategic preprocessing and data augmentation techniques.
Our model, combined with a DenseNet121 encoder, demonstrates excellent performance in lumbar vertebrae and IVD segmentation with a mean Intersection over Union (IoU) of 83.66%, a sensitivity of 91.44%, and Dice Similarity Coefficient (DSC) of 91.03%.
arXiv Detail & Related papers (2024-11-23T21:34:29Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
We propose a novel framework Two-Stage Generative Model (TSGM) to improve brain tumor detection and segmentation.
CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior.
VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide.
arXiv Detail & Related papers (2023-11-06T12:58:26Z) - Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced
Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging [0.6597195879147557]
T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components for cervical cancer diagnosis.
We propose a novel multi-head framework that uses dilated convolutions and shared residual connections for separate encoding of multiparametric MRI images.
arXiv Detail & Related papers (2023-06-19T19:41:21Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Generative Models Improve Radiomics Performance in Different Tasks and
Different Datasets: An Experimental Study [3.040206021972938]
Radiomics is an area of research focusing on high throughput feature extraction from medical images.
Generative models can improve the performance of low dose CT-based radiomics in different tasks.
arXiv Detail & Related papers (2021-09-06T06:01:21Z) - Weaving Attention U-net: A Novel Hybrid CNN and Attention-based Method
for Organs-at-risk Segmentation in Head and Neck CT Images [11.403827695550111]
We develop a novel hybrid deep learning approach, combining convolutional neural networks (CNNs) and the self-attention mechanism.
We show that the proposed method generated contours that closely resemble the ground truth for ten organs-at-risk (OARs)
Our results of the new Weaving Attention U-net demonstrate superior or similar performance on the segmentation of head and neck CT images.
arXiv Detail & Related papers (2021-07-10T14:27:46Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.