論文の概要: Event-based Sensor Fusion and Application on Odometry: A Survey
- arxiv url: http://arxiv.org/abs/2410.15480v1
- Date: Sun, 20 Oct 2024 19:32:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:18:38.038649
- Title: Event-based Sensor Fusion and Application on Odometry: A Survey
- Title(参考訳): イベントベースセンサフュージョンとオドメトリーへの応用:サーベイ
- Authors: Jiaqiang Zhang, Xianjia Yu, Ha Sier, Haizhou Zhang, Tomi Westerlund,
- Abstract要約: イベントカメラは、高速モーション、低照度、広ダイナミックレンジを特徴とする環境において利点がある。
これらの特性は、特にロボット工学とコンピュータビジョンにおけるセンサー融合に有効なイベントカメラをレンダリングする。
- 参考スコア(独自算出の注目度): 2.3717744547851627
- License:
- Abstract: Event cameras, inspired by biological vision, are asynchronous sensors that detect changes in brightness, offering notable advantages in environments characterized by high-speed motion, low lighting, or wide dynamic range. These distinctive properties render event cameras particularly effective for sensor fusion in robotics and computer vision, especially in enhancing traditional visual or LiDAR-inertial odometry. Conventional frame-based cameras suffer from limitations such as motion blur and drift, which can be mitigated by the continuous, low-latency data provided by event cameras. Similarly, LiDAR-based odometry encounters challenges related to the loss of geometric information in environments such as corridors. To address these limitations, unlike the existing event camera-related surveys, this paper presents a comprehensive overview of recent advancements in event-based sensor fusion for odometry applications particularly, investigating fusion strategies that incorporate frame-based cameras, inertial measurement units (IMUs), and LiDAR. The survey critically assesses the contributions of these fusion methods to improving odometry performance in complex environments, while highlighting key applications, and discussing the strengths, limitations, and unresolved challenges. Additionally, it offers insights into potential future research directions to advance event-based sensor fusion for next-generation odometry applications.
- Abstract(参考訳): 生物学的視覚にインスパイアされたイベントカメラは、明るさの変化を検出する非同期センサーであり、高速モーション、低照度、広ダイナミックレンジを特徴とする環境において顕著なアドバンテージを提供する。
これらの特徴的な特徴は、特にロボット工学やコンピュータビジョンにおけるセンサー融合、特に従来の視覚またはLiDAR慣性オドメトリーの強化に有効である。
従来のフレームベースのカメラは、動きのぼやけやドリフトといった制限に悩まされ、イベントカメラによって提供される連続低遅延データによって緩和される。
同様に、LiDARベースのオドメトリーは、廊下のような環境における幾何学的情報の喪失に関連する課題に遭遇する。
これらの制約に対処するため、既存のイベントカメラと異なり、特にフレームベースのカメラ、慣性測定ユニット(IMU)、LiDARを組み込んだ融合戦略について、イベントベースのセンサフュージョンの最近の進歩を概観する。
この調査は、複雑な環境での計測性能向上への融合手法の貢献を批判的に評価し、主要な応用を強調し、強み、限界、未解決の課題について議論する。
さらに、次世代のオドメトリー応用のためのイベントベースのセンサフュージョンを前進させるために、将来の研究方向性に関する洞察を提供する。
関連論文リスト
- EVIT: Event-based Visual-Inertial Tracking in Semi-Dense Maps Using Windowed Nonlinear Optimization [19.915476815328294]
イベントカメラは、絶対的な画像強度を統合するのではなく、明るさの変化に反応する興味深い視覚的知覚センサーである。
本報告では, 推定精度を高めるため, 慣性信号の追加を提案する。
本評価では,さまざまな実世界のシーケンスに焦点をあて,異なるレートで実行されるイベントベースの代替手段との比較を行った。
論文 参考訳(メタデータ) (2024-08-02T16:24:55Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
生物学的網膜にインスパイアされたイベントベースのカメラは、最小限の電力要求、無視できるレイテンシ、時間分解能、拡張可能なダイナミックレンジによって区別される最先端のセンサーへと進化してきた。
イベントベースのカメラは、高速撮像のシナリオにおいて、外部データ伝送を誘発し、動きのぼやけをなくすことによって制限に対処する。
本稿では,特に自律運転における研究と応用について概観する。
論文 参考訳(メタデータ) (2024-07-05T06:17:00Z) - Inertial Guided Uncertainty Estimation of Feature Correspondence in
Visual-Inertial Odometry/SLAM [8.136426395547893]
慣性ガイダンスを用いて特徴対応の不確かさを推定する手法を提案する。
また,近年の視覚-慣性オドメトリー/SLAMアルゴリズムの1つに組み込むことにより,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-11-07T04:56:29Z) - Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a
Light-Weight ToF Sensor [58.305341034419136]
単眼カメラと軽量ToFセンサを備えた初の高密度SLAMシステムを提案する。
本稿では,RGBカメラと軽量ToFセンサの両方の信号のレンダリングをサポートするマルチモーダル暗黙のシーン表現を提案する。
実験により,本システムは軽量なToFセンサの信号をうまく利用し,競合的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-28T07:56:13Z) - FEDORA: Flying Event Dataset fOr Reactive behAvior [9.470870778715689]
イベントベースのセンサーは、高速な動きを捉えるための標準フレームベースのカメラに代わる低レイテンシと低エネルギーの代替として登場した。
Flying Eventデータセット fOr Reactive behAviour (FEDORA) - 知覚タスクのための完全に合成されたデータセット。
論文 参考訳(メタデータ) (2023-05-22T22:59:05Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
ローカライゼーションとマッピングタスクのための非同期および不規則なイベントストリームの利点を利用する、イベントベースのvSLAMアルゴリズムのレビュー。
Paperは、イベントベースのvSLAMメソッドを、特徴ベース、ダイレクト、モーション補償、ディープラーニングの4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-04-19T16:21:14Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
本稿では,セグメンテーション情報を利用してパラメータ推定を自動化する,外部カメラキャリブレーション手法を提案する。
われわれのアプローチは、カメラのポーズの粗い初期測定と、車両に搭載されたライダーセンサーによる構築に依存している。
シミュレーションおよび実世界のデータを用いて,キャリブレーション結果の低誤差測定を行う。
論文 参考訳(メタデータ) (2022-08-08T07:25:03Z) - Lasers to Events: Automatic Extrinsic Calibration of Lidars and Event
Cameras [67.84498757689776]
本稿では,イベントカメラとライダーの直接校正法について述べる。
フレームベースのカメラインターミディエートおよび/または高精度の手測定への依存を除去する。
論文 参考訳(メタデータ) (2022-07-03T11:05:45Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
イベントカメラは、低レイテンシと高ダイナミックレンジのために、ロボット知覚の新しい可能性を開く。
イベントベースビジュアル・オドメトリー(VO)に焦点をあてる
動作最適化のバックエンドとして非同期構造を提案する。
論文 参考訳(メタデータ) (2022-03-02T11:28:47Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。