論文の概要: Online Pseudo-Label Unified Object Detection for Multiple Datasets Training
- arxiv url: http://arxiv.org/abs/2410.15569v1
- Date: Mon, 21 Oct 2024 01:23:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:18:36.422197
- Title: Online Pseudo-Label Unified Object Detection for Multiple Datasets Training
- Title(参考訳): 複数データセット学習のためのオンライン擬似ラベル統一オブジェクト検出
- Authors: XiaoJun Tang, Jingru Wang, Zeyu Shangguan, Darun Tang, Yuyu Liu,
- Abstract要約: オンライン擬似ラベル統一オブジェクト検出方式を提案する。
本手法では,周期的に更新された教師モデルを用いて,各サブデータセット内の未ラベルオブジェクトの擬似ラベルを生成する。
また,地域提案ネットワーク(PRN)のリコール率を改善するために,カテゴリ別ボックス回帰と擬似ラベルRPNヘッドを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The Unified Object Detection (UOD) task aims to achieve object detection of all merged categories through training on multiple datasets, and is of great significance in comprehensive object detection scenarios. In this paper, we conduct a thorough analysis of the cross datasets missing annotations issue, and propose an Online Pseudo-Label Unified Object Detection scheme. Our method uses a periodically updated teacher model to generate pseudo-labels for the unlabelled objects in each sub-dataset. This periodical update strategy could better ensure that the accuracy of the teacher model reaches the local maxima and maximized the quality of pseudo-labels. In addition, we survey the influence of overlapped region proposals on the accuracy of box regression. We propose a category specific box regression and a pseudo-label RPN head to improve the recall rate of the Region Proposal Network (PRN). Our experimental results on common used benchmarks (\eg COCO, Object365 and OpenImages) indicates that our online pseudo-label UOD method achieves higher accuracy than existing SOTA methods.
- Abstract(参考訳): 統一オブジェクト検出(UOD)タスクは、複数のデータセットのトレーニングを通じて、すべての統合されたカテゴリのオブジェクト検出を実現することを目的としており、包括的なオブジェクト検出シナリオにおいて非常に重要である。
本稿では,アノテーションの欠落したデータセットを網羅的に分析し,オンライン擬似ラベル統一オブジェクト検出手法を提案する。
本手法では,周期的に更新された教師モデルを用いて,各サブデータセット内の未ラベルオブジェクトの擬似ラベルを生成する。
この定期的な更新戦略により、教師モデルの精度が局所的な最大値に達し、擬似ラベルの品質を最大化する。
さらに,ボックス回帰の精度に及ぼす重複領域の提案の影響を調査した。
本研究では,地域提案ネットワーク(PRN)のリコール率を改善するために,カテゴリ別ボックス回帰と擬似ラベルRPNヘッドを提案する。
一般的なベンチマーク(CCO, Object365, OpenImages)による実験結果から, オンライン擬似ラベル UOD 法は既存のSOTA 法よりも精度が高いことがわかった。
関連論文リスト
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
本稿では,SOOD++ と呼ばれる簡易かつ効果的な半教師付きオブジェクト指向検出手法を提案する。
具体的には、空中画像からの物体は、通常任意の向き、小さなスケール、集約である。
様々なラベル付き環境下での多目的オブジェクトデータセットに対する大規模な実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-01T07:03:51Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
ドメイン適応型3Dオブジェクト検出において,疑似ラベリング技術を用いた教師なしドメイン適応(DA)が重要なアプローチとして浮上している。
既存のDAメソッドは、マルチクラスのトレーニング環境に適用した場合、パフォーマンスが大幅に低下する。
本稿では,すべてのクラスを一度に検出する学習に適した新しいReDBフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-16T04:34:11Z) - Identification of Novel Classes for Improving Few-Shot Object Detection [12.013345715187285]
Few-shot Object Detection (FSOD) メソッドは、クラス毎に少数のトレーニングサンプルのみを使用して、堅牢なオブジェクト検出を実現することで、改善を提供する。
我々は、FSOD性能を向上させるためのトレーニング中に、未ラベルの新規物体を正のサンプルとして検出し、利用するための半教師付きアルゴリズムを開発した。
実験の結果,本手法は既存のSOTA FSOD法よりも有効であり,優れた結果が得られた。
論文 参考訳(メタデータ) (2023-03-18T14:12:52Z) - Semi-Supervised Object Detection with Object-wise Contrastive Learning
and Regression Uncertainty [46.21528260727673]
そこで本研究では,教師学習フレームワークにおける2段階の擬似ラベルフィルタリング手法を提案する。
学生ネットワークは、分類および回帰ヘッドのための擬似ラベルを共同フィルタリングすることにより、教師ネットワークからオブジェクト検出タスクのためのより良い指導を受ける。
論文 参考訳(メタデータ) (2022-12-06T04:37:51Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
本稿では,ST3D++という名前の自己学習手法を提案する。
擬似ラベル生成プロセスにハイブリット品質を意識した三重項メモリを組み込むことにより、生成された擬似ラベルの品質と安定性を向上させる。
モデルトレーニングの段階では、ソースデータ支援トレーニング戦略とカリキュラムデータ拡張ポリシーを提案する。
論文 参考訳(メタデータ) (2021-08-15T07:49:06Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。