論文の概要: Solving Sparse \& High-Dimensional-Output Regression via Compression
- arxiv url: http://arxiv.org/abs/2410.15762v1
- Date: Mon, 21 Oct 2024 08:21:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:47.295854
- Title: Solving Sparse \& High-Dimensional-Output Regression via Compression
- Title(参考訳): 圧縮によるスパースと高次元出力回帰の解法
- Authors: Renyuan Li, Zhehui Chen, Guanyi Wang,
- Abstract要約: MOR(Multi-Output Regression)は、意思決定のための科学的データ分析に広く用いられている。
出力の次元性の増大は、現代のMORアプリケーションに対する解釈可能性と計算スケーラビリティに関する大きな課題を生じさせる。
本稿では,出力の解釈可能性を解決するために,余剰条件を付加することで,スパース&高次元出力回帰モデルを提案する。
提案手法は,任意のサンプルセット条件や比較的弱いサンプルセット条件下でのトレーニング損失と予測損失を,同じ順序で維持しながら,計算的にスケーラブルであることを示す。
- 参考スコア(独自算出の注目度): 2.7596444457918263
- License:
- Abstract: Multi-Output Regression (MOR) has been widely used in scientific data analysis for decision-making. Unlike traditional regression models, MOR aims to simultaneously predict multiple real-valued outputs given an input. However, the increasing dimensionality of the outputs poses significant challenges regarding interpretability and computational scalability for modern MOR applications. As a first step to address these challenges, this paper proposes a Sparse \& High-dimensional-Output REgression (SHORE) model by incorporating additional sparsity requirements to resolve the output interpretability, and then designs a computationally efficient two-stage optimization framework capable of solving SHORE with provable accuracy via compression on outputs. Theoretically, we show that the proposed framework is computationally scalable while maintaining the same order of training loss and prediction loss before-and-after compression under arbitrary or relatively weak sample set conditions. Empirically, numerical results further validate the theoretical findings, showcasing the efficiency and accuracy of the proposed framework.
- Abstract(参考訳): MOR(Multi-Output Regression)は、意思決定のための科学データ分析に広く用いられている。
従来の回帰モデルとは異なり、MORは入力が与えられた複数の実数値出力を同時に予測することを目的としている。
しかし、出力の次元性の増大は、現代のMORアプリケーションにおいて、解釈可能性と計算スケーラビリティに重大な課題をもたらす。
これらの課題に対処する第一歩として、出力の解釈可能性を解決するために余分な余剰要件を組み込んだスパース \&高次元出力回帰(SHORE)モデルを提案し、出力の圧縮によりSHOREを証明可能な精度で解くことができる計算効率の良い2段階最適化フレームワークを設計する。
理論的には、任意のサンプルセット条件や比較的弱いサンプルセット条件下で、トレーニング損失と予測損失の同じ順序を維持しながら、提案フレームワークは計算にスケーラブルであることを示す。
実験により,提案手法の有効性と精度を実証し,理論的結果をさらに検証した。
関連論文リスト
- Ensemble Prediction via Covariate-dependent Stacking [0.0]
本研究は,CDST (Co-dependent stacking') という,アンサンブル予測の新しい手法を提案する。
従来の積み重ね方式とは異なり、CDSTはモデルウェイトを共変量の関数として柔軟に変化させ、複雑なシナリオにおける予測性能を向上させる。
以上の結果から,CDSTは時間的・時間的予測の問題に特に有用であり,様々なデータ分析分野の研究者や実践者にとって強力なツールとなることが示唆された。
論文 参考訳(メタデータ) (2024-08-19T07:31:31Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Distributed High-Dimensional Quantile Regression: Estimation Efficiency and Support Recovery [0.0]
我々は高次元線形量子レグレッションのための分散推定とサポート回復に焦点をあてる。
元の量子レグレッションを最小二乗最適化に変換する。
効率的なアルゴリズムを開発し、高い計算と通信効率を享受する。
論文 参考訳(メタデータ) (2024-05-13T08:32:22Z) - Successive Refinement in Large-Scale Computation: Advancing Model
Inference Applications [67.76749044675721]
階層化分解能計算の解を導入する。
これらの解により、最終結果よりも早い段階でより解像度の低い結果が得られる。
論文 参考訳(メタデータ) (2024-02-11T15:36:33Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Robust Output Analysis with Monte-Carlo Methodology [0.0]
シミュレーションや機械学習を用いた予測モデリングでは,推定値の品質を正確に評価することが重要である。
モンテカルロサンプリングのレンズによるシミュレーションと機械学習の出力の統一的な出力分析フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-27T16:21:59Z) - RIGID: Robust Linear Regression with Missing Data [7.638042073679073]
機能に欠落したエントリで線形回帰を行うための堅牢なフレームワークを提案する。
本稿では,変数間の依存性を自然に考慮した定式化が,凸プログラムに還元されることを示す。
詳細な分析に加えて,提案するフレームワークの挙動を分析し,技術的議論を行う。
論文 参考訳(メタデータ) (2022-05-26T21:10:17Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
コンクリートの圧縮強度のモデルに基づく評価は, 強度予測と混合最適化の両方のために高い値である。
複数の回帰手法の重み付け組み合わせにより予測モデルの精度を向上させるためのさらなる一歩を踏み出す。
得られた多回帰モデルに基づいてGAに基づく混合最適化を提案する。
論文 参考訳(メタデータ) (2021-06-13T16:10:32Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。