論文の概要: Resilient Temporal GCN for Smart Grid State Estimation Under Topology Inaccuracies
- arxiv url: http://arxiv.org/abs/2410.16008v1
- Date: Mon, 21 Oct 2024 13:41:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:27.072109
- Title: Resilient Temporal GCN for Smart Grid State Estimation Under Topology Inaccuracies
- Title(参考訳): トポロジ不正確なスマートグリッド状態推定のための回復時間GCN
- Authors: Seyed Hamed Haghshenas, Mia Naeini,
- Abstract要約: 本稿では,電力系統における状態推定のための時間グラフ畳み込みネットワーク(TGCN)の性能に対する不確実性の影響について検討する。
TGCNモデルの修正は、測定データに基づいて生成された知識グラフを組み込むために提案される。
知識グラフを統合するためにTGCNアーキテクチャの2つのバリエーションを導入し、その性能を評価し、不確実性に対するレジリエンスの向上を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: State Estimation is a crucial task in power systems. Graph Neural Networks have demonstrated significant potential in state estimation for power systems by effectively analyzing measurement data and capturing the complex interactions and interrelations among the measurements through the system's graph structure. However, the information about the system's graph structure may be inaccurate due to noise, attack or lack of accurate information about the topology of the system. This paper studies these scenarios under topology uncertainties and evaluates the impact of the topology uncertainties on the performance of a Temporal Graph Convolutional Network (TGCN) for state estimation in power systems. In order to make the model resilient to topology uncertainties, modifications in the TGCN model are proposed to incorporate a knowledge graph, generated based on the measurement data. This knowledge graph supports the assumed uncertain system graph. Two variations of the TGCN architecture are introduced to integrate the knowledge graph, and their performances are evaluated and compared to demonstrate improved resilience against topology uncertainties. The evaluation results indicate that while the two proposed architecture show different performance, they both improve the performance of the TGCN state estimation under topology uncertainties.
- Abstract(参考訳): 状態推定は電力システムにおいて重要な課題である。
グラフニューラルネットワークは、測定データを効果的に分析し、システムのグラフ構造を通して測定間の複雑な相互作用と相互関係をキャプチャすることで、電力システムの状態推定に有意な可能性を証明している。
しかしながら、システムのグラフ構造に関する情報は、システムのトポロジに関する正確な情報のノイズ、攻撃、欠如によって不正確である可能性がある。
本稿では、これらのシナリオをトポロジの不確実性の下で研究し、トポロジの不確実性が電力系統における状態推定のための時間グラフ畳み込みネットワーク(TGCN)の性能に与える影響を評価する。
トポロジの不確実性に対してモデルに耐性を持たせるために,測定データに基づいて生成した知識グラフを組み込むため,TGCNモデルの修正を提案する。
この知識グラフは、仮定された不確実なシステムグラフをサポートする。
知識グラフを統合するためにTGCNアーキテクチャの2つのバリエーションを導入し、その性能を評価し、トポロジーの不確実性に対するレジリエンスの向上を示す。
評価結果は,2つの提案したアーキテクチャは異なる性能を示すが,どちらもトポロジの不確実性の下でのTGCN状態推定の性能を向上させることを示唆している。
関連論文リスト
- Conditional Uncertainty Quantification for Tensorized Topological Neural Networks [19.560300212956747]
グラフニューラルネットワーク(GNN)は,グラフ構造化データを解析するためのデファクトスタンダードとなっている。
近年の研究では、GNNによる不確実性推定の統計的信頼性に関する懸念が高まっている。
本稿では,交換不能なグラフ構造化データの不確かさを定量化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-20T01:03:40Z) - Characterizing the Influence of Topology on Graph Learning Tasks [47.48010635921621]
グラフニューラルネットワーク(GNN)は、トポロジと組み合わせて効率的な表現を生成することで、幅広いタスクにおいて顕著な成功を収めている。
本稿では,グラフデータのトポロジ情報と下流タスク目標との整合度を測定することで,グラフトポロジの影響を特徴づける計量TopoInfを提案する。
論文 参考訳(メタデータ) (2024-04-11T06:04:06Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Scalability and Sample Efficiency Analysis of Graph Neural Networks for
Power System State Estimation [1.0499611180329804]
本稿では,因子グラフ上に印加されたグラフニューラルネットワーク(GNN)に基づいて,ファサー測定単位のみの状態推定器を徹底的に評価する。
以上の結果から,GNNに基づく状態推定器は高精度で効率的なデータ利用が可能であることが示唆された。
論文 参考訳(メタデータ) (2023-02-28T22:09:12Z) - A Temporal Graph Neural Network for Cyber Attack Detection and
Localization in Smart Grids [0.3093890460224435]
本稿では,スマートグリッドのシステム状態に対する偽データインジェクションとランプ攻撃の検出とローカライズを行うための時間グラフニューラルネットワーク(TGNN)フレームワークを提案する。
攻撃の強度と位置に対するモデルの感度とモデルの検出遅延と検出精度を評価した。
論文 参考訳(メタデータ) (2022-12-07T00:56:02Z) - Position-aware Structure Learning for Graph Topology-imbalance by
Relieving Under-reaching and Over-squashing [67.83086131278904]
トポロジー不均衡は、ラベル付きノードの不均一なトポロジー位置によって引き起こされるグラフ固有の不均衡問題である。
PASTEL という新しい位置認識型グラフ構造学習フレームワークを提案する。
私たちの重要な洞察は、より監督的な情報を得るために、同じクラス内のノードの接続性を高めることです。
論文 参考訳(メタデータ) (2022-08-17T14:04:21Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Stability of Graph Convolutional Neural Networks to Stochastic
Perturbations [122.12962842842349]
グラフ畳み込みニューラルネットワーク(GCNN)は、ネットワークデータから表現を学ぶ非線形処理ツールである。
現在の分析では決定論的摂動を考慮しているが、トポロジカルな変化がランダムである場合、関連する洞察を与えられない。
本稿では,リンク損失に起因する乱れグラフ摂動に対するGCNNの安定性について検討する。
論文 参考訳(メタデータ) (2021-06-19T16:25:28Z) - Bayesian Inductive Learner for Graph Resiliency under uncertainty [1.9254132307399257]
大規模グラフにおける臨界ノードを特定するためのベイズグラフニューラルネットワークに基づくフレームワークを提案する。
フレームワークが提供する計算複雑性の忠実さと向上について説明する。
論文 参考訳(メタデータ) (2020-12-26T07:22:29Z) - Bayesian Spatio-Temporal Graph Convolutional Network for Traffic
Forecasting [22.277878492878475]
本稿では,BSTGCN (Bayesian S-temporal Contemporal Graphal Network) を提案する。
ネットワーク内のグラフ構造は,道路網の物理的トポロジと交通データからエンドツーエンドに学習する。
実世界の2つのデータセットに対する本手法の有効性を検証し,BSTGCNが最先端の手法と比較して優れた性能を発揮することを示した。
論文 参考訳(メタデータ) (2020-10-15T03:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。