論文の概要: Proactive security defense: cyber threat intelligence modeling for connected autonomous vehicles
- arxiv url: http://arxiv.org/abs/2410.16016v1
- Date: Mon, 21 Oct 2024 13:49:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:15:29.396822
- Title: Proactive security defense: cyber threat intelligence modeling for connected autonomous vehicles
- Title(参考訳): アクティブ・セキュリティ・ディフェンス:コネクテッド・自動運転車のサイバー脅威情報モデリング
- Authors: Yinghui Wang, Yilong Ren, Zhiyong Cui, Haiyang Yu,
- Abstract要約: 我々は,サイバー脅威要素間の関係を抽出し,分析する,自動車用CTIモデリングフレームワークであるアクティムを提案する。
実験結果から,提案したBERT-DocHiatt-BiLSTM-LSTMモデルが既存手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 18.956583063203738
- License:
- Abstract: Cybersecurity has become a crucial concern in the field of connected autonomous vehicles. Cyber threat intelligence (CTI), as the collection of cyber threat information, offers an ideal way for responding to emerging cyber threats and realizing proactive security defense. However, instant analysis and modeling of vehicle cybersecurity data is a fundamental challenge since its complex and professional context. In this paper, we suggest an automotive CTI modeling framework, Actim, to extract and analyse the interrelated relationships among cyber threat elements. Specifically, we first design a vehicle security-safety conceptual ontology model to depict various threat entity classes and their relations. Then, we manually annotate the first automobile CTI corpus by using real cybersecurity data, which comprises 908 threat intelligence texts, including 8195 entities and 4852 relationships. To effectively extract cyber threat entities and their relations, we propose an automotive CTI mining model based on cross-sentence context. Experiment results show that the proposed BERT-DocHiatt-BiLSTM-LSTM model exceeds the performance of existing methods. Finally, we define entity-relation matching rules and create a CTI knowledge graph that structurally fuses various elements of cyber threats. The Actim framework enables mining the intrinsic connections among threat entities, providing valuable insight on the evolving cyber threat landscape.
- Abstract(参考訳): サイバーセキュリティは、コネクテッド・自動運転車の分野で重要な関心事となっている。
サイバー脅威情報(サイバー脅威インテリジェンス、英: Cyber threat Intelligence、CTI)は、サイバー脅威情報収集の手段として、新興のサイバー脅威に対処し、積極的なセキュリティ防衛を実現するための理想的な方法である。
しかし、車両のサイバーセキュリティデータのインスタント分析とモデリングは、その複雑で専門的な文脈から、根本的な課題である。
本稿では,サイバー脅威要素間の関係を抽出し,分析する,自動車用CTIモデリングフレームワークであるActimを提案する。
具体的には,まず車両安全概念オントロジーモデルを設計し,様々な脅威エンティティクラスとその関係を描写する。
そして、実際のサイバーセキュリティデータを用いて、8195のエンティティと4852の関係を含む908の脅威知能テキストを含む最初の自動車CTIコーパスを手動で注釈付けする。
サイバー脅威エンティティとその関係を効果的に抽出するために,クロスセンスコンテキストに基づく自動車用CTIマイニングモデルを提案する。
実験結果から,提案したBERT-DocHiatt-BiLSTM-LSTMモデルが既存手法よりも優れていることがわかった。
最後に、エンティティ・リレーション・マッチング・ルールを定義し、サイバー脅威の様々な要素を構造的に融合させるCTI知識グラフを作成する。
Actimフレームワークは、脅威エンティティ間の本質的な接続のマイニングを可能にし、進化するサイバー脅威の風景に関する貴重な洞察を提供する。
関連論文リスト
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - A dataset for cyber threat intelligence modeling of connected autonomous vehicles [17.58243748365034]
本稿では,車両のサイバーセキュリティ知識マイニングに着目したサイバー脅威情報コーパスの作成について報告する。
提案したデータセットは、既存のアルゴリズムの性能を評価し、自動車分野におけるサイバー脅威情報モデリングの研究を進めるための貴重なリソースとなる。
論文 参考訳(メタデータ) (2024-10-18T16:55:12Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Recognizing and Extracting Cybersecurtity-relevant Entities from Text [1.7499351967216343]
サイバー脅威インテリジェンス(Cyber Threat Intelligence、CTI)は、脅威ベクトル、脆弱性、攻撃を記述した情報である。
CTIはしばしば、サイバーセキュリティ知識グラフ(CKG)のようなAIベースのサイバー防衛システムのトレーニングデータとして使用される。
論文 参考訳(メタデータ) (2022-08-02T18:44:06Z) - Simulating Malicious Attacks on VANETs for Connected and Autonomous
Vehicle Cybersecurity: A Machine Learning Dataset [0.4129225533930965]
コネクテッド・アンド・オートマチック・ビークルズ(CAV)はVehicular Adhoc Networksに頼り、安全運転を支援するために車両と道路インフラストラクチャー間の無線通信を行っている。
サイバーセキュリティ攻撃はVANETとCAVの安全な運用に脅威をもたらす。
本研究では,悪質な攻撃を受ける可能性のある典型的な通信シナリオをモデル化するためのシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2022-02-15T20:08:58Z) - Generating Cyber Threat Intelligence to Discover Potential Security
Threats Using Classification and Topic Modeling [6.0897744845912865]
サイバー脅威インテリジェンス(CTI)は、能動的かつ堅牢なメカニズムの1つとして表現されている。
我々のゴールは、異なる教師なしおよび教師なしの学習技術を用いて、ハッカーフォーラムから関連するCTIを特定し、探索することである。
論文 参考訳(メタデータ) (2021-08-16T02:30:29Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
ThreatRaptorは、OSCTIを使用してコンピュータシステムにおけるサイバー脅威ハンティングを容易にするシステムです。
ThreatRaptorは、(1)構造化OSCTIテキストから構造化された脅威行動を抽出する非監視で軽量で正確なNLPパイプライン、(2)簡潔で表現力のあるドメイン固有クエリ言語であるTBQLを提供し、悪意のあるシステムアクティビティを探し、(3)抽出された脅威行動からTBQLクエリを自動的に合成するクエリ合成メカニズムを提供する。
論文 参考訳(メタデータ) (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptorは、オープンソースのCyber Threat Intelligence(OSCTI)を使用して、コンピュータシステムにおける脅威追跡を容易にするシステムである。
構造化されていないOSCTIテキストから構造化された脅威行動を抽出し、簡潔で表現力豊かなドメイン固有クエリ言語TBQLを使用して悪意のあるシステムアクティビティを探索する。
広範囲にわたる攻撃事例の評価は、現実的な脅威狩りにおけるThreatRaptorの精度と効率を実証している。
論文 参考訳(メタデータ) (2020-10-26T14:54:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。