論文の概要: Simulating Malicious Attacks on VANETs for Connected and Autonomous
Vehicle Cybersecurity: A Machine Learning Dataset
- arxiv url: http://arxiv.org/abs/2202.07704v1
- Date: Tue, 15 Feb 2022 20:08:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-18 05:12:09.807426
- Title: Simulating Malicious Attacks on VANETs for Connected and Autonomous
Vehicle Cybersecurity: A Machine Learning Dataset
- Title(参考訳): 接続および自律車両サイバーセキュリティのためのVANET上の悪意ある攻撃のシミュレーション:機械学習データセット
- Authors: Safras Iqbal, Peter Ball, Muhammad H Kamarudin, Andrew Bradley
- Abstract要約: コネクテッド・アンド・オートマチック・ビークルズ(CAV)はVehicular Adhoc Networksに頼り、安全運転を支援するために車両と道路インフラストラクチャー間の無線通信を行っている。
サイバーセキュリティ攻撃はVANETとCAVの安全な運用に脅威をもたらす。
本研究では,悪質な攻撃を受ける可能性のある典型的な通信シナリオをモデル化するためのシミュレーション手法を提案する。
- 参考スコア(独自算出の注目度): 0.4129225533930965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connected and Autonomous Vehicles (CAVs) rely on Vehicular Adhoc Networks
with wireless communication between vehicles and roadside infrastructure to
support safe operation. However, cybersecurity attacks pose a threat to VANETs
and the safe operation of CAVs. This study proposes the use of simulation for
modelling typical communication scenarios which may be subject to malicious
attacks. The Eclipse MOSAIC simulation framework is used to model two typical
road scenarios, including messaging between the vehicles and infrastructure -
and both replay and bogus information cybersecurity attacks are introduced. The
model demonstrates the impact of these attacks, and provides an open dataset to
inform the development of machine learning algorithms to provide anomaly
detection and mitigation solutions for enhancing secure communications and safe
deployment of CAVs on the road.
- Abstract(参考訳): コネクテッド・アンド・オートマチック・ビークルズ(CAV)はVehicular Adhoc Networksに頼っており、安全運転を支援するために車両と道路インフラストラクチャー間の無線通信を行っている。
しかし、サイバーセキュリティ攻撃はVANETとCAVの安全な運用に脅威をもたらす。
本研究は,悪質な攻撃を受ける可能性のある典型的なコミュニケーションシナリオをモデル化するためのシミュレーションの利用を提案する。
Eclipse MOSAICシミュレーションフレームワークは、車両とインフラの間のメッセージングを含む2つの典型的な道路シナリオをモデル化するために使用される。
このモデルはこれらの攻撃の影響を実証し、機械学習アルゴリズムの開発を知らせるオープンデータセットを提供し、道路上の安全な通信と安全なCAVの配置を確保するための異常検出と緩和ソリューションを提供する。
関連論文リスト
- Proactive security defense: cyber threat intelligence modeling for connected autonomous vehicles [18.956583063203738]
我々は,サイバー脅威要素間の関係を抽出し,分析する,自動車用CTIモデリングフレームワークであるアクティムを提案する。
実験結果から,提案したBERT-DocHiatt-BiLSTM-LSTMモデルが既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-21T13:49:35Z) - Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks [82.3753728955968]
本稿では,新しいMixture-of-Experts(MoE)ベースのSemComシステムを提案する。
このシステムはゲーティングネットワークと複数の専門家で構成され、それぞれ異なるセキュリティ課題に特化している。
ゲーティングネットワークは、ユーザ定義のセキュリティ要件に基づいて、異種攻撃に対抗するための適切な専門家を適応的に選択する。
車両ネットワークにおけるケーススタディは、MoEベースのSemComシステムの有効性を示す。
論文 参考訳(メタデータ) (2024-09-24T03:17:51Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
IoVネットワークにおけるインフォテインメントデータ通信の安全性の欠如は、社会的エンジニアリング攻撃の容易なアクセスポイントを意図せずに開放することができる。
特に、まずIoVネットワークでデータ通信を分類し、各データ通信のセキュリティ焦点を調べ、その後、ファイル間通信でセキュリティ保護を提供するための異なるセキュリティアーキテクチャを開発する。
論文 参考訳(メタデータ) (2024-03-29T12:01:31Z) - Survey on Security Attacks in Connected and Autonomous Vehicular Systems [0.0]
本研究は,CAV環境におけるサイバーセキュリティの現状について概説する。
CAVのコンテキストにおけるサイバーセキュリティの脅威と弱点を、車両ネットワークに対する攻撃、インターネットに対する大規模な攻撃、その他の3つのグループに分類する。
CAVを確保するための最も最新の防衛戦術を詳述し、その効果を分析している。
論文 参考訳(メタデータ) (2023-10-14T06:37:05Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
悪意のあるサイバー攻撃を識別できる侵入検知システム(IDS)が開発されている。
我々は、LCCDE(Lead Class and Confidence Decision Ensemble)という新しいアンサンブルIDSフレームワークを提案する。
LCCDEは、3つの高度なアルゴリズムの中で最高のパフォーマンスのMLモデルを決定することで構成される。
論文 参考訳(メタデータ) (2022-08-05T22:30:34Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Cybersecurity Threats in Connected and Automated Vehicles based
Federated Learning Systems [7.979659145328856]
Federated Learning(FL)は、ローカルデータをプライベートに保持する分散型エンティティにまたがるアルゴリズムのトレーニングを目的とする。
ほとんどのサイバー防御技術は、信頼性の高い接続ネットワークに依存します。
本稿では、RSUで進行中のFLプロセスをターゲットにした偽情報攻撃について検討する。
論文 参考訳(メタデータ) (2021-02-26T01:39:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。