論文の概要: Neural Quantum Propagators for Driven-Dissipative Quantum Dynamics
- arxiv url: http://arxiv.org/abs/2410.16091v1
- Date: Mon, 21 Oct 2024 15:13:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:34.417427
- Title: Neural Quantum Propagators for Driven-Dissipative Quantum Dynamics
- Title(参考訳): 駆動型量子ダイナミクスのためのニューラル量子プロパゲータ
- Authors: Jiaji Zhang, Carlos L. Benavides-Riveros, Lipeng Chen,
- Abstract要約: 我々は、駆動散逸型量子力学を解く普遍的なニューラルネットワークフレームワークである、駆動型量子プロパゲータ(NQP)を開発した。
NQPは任意の初期量子状態を処理することができ、様々な外部フィールドに適応し、より短い時間窓で訓練された場合でも、長時間のダイナミクスをシミュレートすることができる。
スピンボソンモデルと3状態遷移ガンマモデルを用いて,本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Describing the dynamics of strong-laser driven open quantum systems is a very challenging task that requires the solution of highly involved equations of motion. While machine learning techniques are being applied with some success to simulate the time evolution of individual quantum states, their use to approximate time-dependent operators (that can evolve various states) remains largely unexplored. In this work, we develop driven neural quantum propagators (NQP), a universal neural network framework that solves driven-dissipative quantum dynamics by approximating propagators rather than wavefunctions or density matrices. NQP can handle arbitrary initial quantum states, adapt to various external fields, and simulate long-time dynamics, even when trained on far shorter time windows. Furthermore, by appropriately configuring the external fields, our trained NQP can be transferred to systems governed by different Hamiltonians. We demonstrate the effectiveness of our approach by studying the spin-boson and the three-state transition Gamma models.
- Abstract(参考訳): 強レーザー駆動のオープン量子系の力学を記述することは、非常に複雑な運動方程式の解を必要とする非常に難しい課題である。
機械学習技術は、個々の量子状態の時間進化をシミュレートするためにいくつかの成功と共に応用されているが、時間依存演算子(様々な状態を進化させることができる)へのそれらの使用は、ほとんど未解明のままである。
本研究では、波動関数や密度行列ではなくプロパゲータを近似することにより、駆動散逸量子力学を解く汎用ニューラルネットワークフレームワークである、駆動型量子プロパゲータ(NQP)を開発する。
NQPは任意の初期量子状態を処理することができ、様々な外部フィールドに適応し、より短い時間窓で訓練された場合でも、長時間のダイナミクスをシミュレートすることができる。
さらに、外部フィールドを適切に構成することにより、トレーニングされたNQPは、異なるハミルトン人が管理するシステムに移行することができる。
スピンボソンモデルと3状態遷移ガンマモデルを用いて,本手法の有効性を実証する。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Simulation of open quantum systems on universal quantum computers [15.876768787615179]
量子コンピュータを用いてオープンな量子システムをシミュレートする,革新的でスケーラブルな手法を提案する。
共役密度行列を真の密度行列と定義し、混合ユニタリ量子チャネルに還元する。
正確な長時間シミュレーションも随伴密度行列として達成でき、真の散逸した行列は同じ状態に収束する。
論文 参考訳(メタデータ) (2024-05-31T09:07:27Z) - Artificial-intelligence-based surrogate solution of dissipative quantum
dynamics: physics-informed reconstruction of the universal propagator [0.0]
本稿では,散逸的量子力学を解く人工知能に基づく代理モデルを提案する。
我々の量子ニューラルプロパゲータは、時間を要するイテレーションを避け、普遍的なスーパーオペレータを提供する。
論文 参考訳(メタデータ) (2024-02-05T07:52:04Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
行列生成状態(MPS)と演算子(MPO)は、量子多体系を研究するための強力なツールであることが証明されている。
テンソルネットワークの形で古典的な知識を用いることで、制限された量子資源をよりよく活用できることを示す。
論文 参考訳(メタデータ) (2023-05-30T17:21:52Z) - Measuring Quantum Entanglement from Local Information by Machine
Learning [10.161394383081145]
絡み合いは量子技術の発展における鍵となる性質である。
本稿では,局所ハミルトニアンの平衡状態と非平衡状態の絡み合いを測定するためのニューラルネットワーク支援プロトコルを提案する。
論文 参考訳(メタデータ) (2022-09-18T08:15:49Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。