論文の概要: Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors
- arxiv url: http://arxiv.org/abs/2410.16136v2
- Date: Tue, 11 Mar 2025 18:54:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:35:07.521076
- Title: Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors
- Title(参考訳): 自然なビデオ刺激と刺激非依存潜在因子を組み合わせた動的神経活動のモデル化
- Authors: Finn Schmidt, Polina Turishcheva, Suhas Shrinivasan, Fabian H. Sinz,
- Abstract要約: 本稿では,映像刺激と刺激非依存の潜伏因子からニューロン反応の結合分布を予測する確率モデルを提案する。
その結果,他のニューロンからの反応を条件づけた場合,対数様態で映像のみのモデルより優れ,可能性や相関性が向上することが判明した。
- 参考スコア(独自算出の注目度): 5.967290675400836
- License:
- Abstract: Understanding how visual processing of natural stimuli and internal brain states interact in populations of neurons remains an open question in neuroscience. Currently there are no dynamic encoding models that explicitly model a latent state and the entire neuronal response distribution. We address this gap by proposing a probabilistic model that predicts the joint distribution of the neuronal responses from video stimuli and stimulus-independent latent factors. After training and testing our model on mouse V1 neuronal responses, we find that it outperforms video-only models in terms of log-likelihood and achieves improvements in likelihood and correlation when conditioned on responses from other neurons. Furthermore, we find that the learned latent factors strongly correlate with mouse behavior and that they exhibits patterns related to the neurons position on visual cortex, although the model was trained without behavior and cortical coordinates. Our findings demonstrate that unsupervised learning of latent factors from population responses can reveal biologically meaningful structure that bridges sensory processing and behavior, without requiring explicit behavioral annotations during training. Code will be available upon publication.
- Abstract(参考訳): 自然刺激と脳内状態の視覚的処理がニューロンの集団の中でどのように相互作用するかを理解することは、神経科学において未解決の問題である。
現在、潜在状態と神経細胞の応答分布を明示的にモデル化する動的符号化モデルは存在しない。
このギャップは,映像刺激と刺激非依存の潜伏因子からの神経反応の結合分布を予測する確率論的モデルによって解決される。
マウスV1ニューロンの反応を訓練し、実験した結果、ビデオのみのモデルよりもログライクで優れており、他のニューロンからの反応に対して条件付けされた場合、その可能性と相関性が向上することがわかった。
さらに、学習された潜伏因子はマウスの行動と強く相関し、そのモデルが行動や皮質座標を伴わずに訓練されたにもかかわらず、視覚皮質上のニューロンの位置に関連するパターンを示すことが判明した。
以上の結果より,集団反応から潜伏要因の教師なし学習は,訓練中に明示的な行動アノテーションを必要とせず,感覚処理と行動の橋渡しを行う生物学的に意味のある構造を示す可能性が示唆された。
コードは出版時に公開されます。
関連論文リスト
- QuantFormer: Learning to Quantize for Neural Activity Forecasting in Mouse Visual Cortex [26.499583552980248]
QuantFormerは、2光子カルシウムイメージングデータから神経活動を予測するために特別に設計されたトランスフォーマーベースのモデルである。
QuantFormerは、マウス視覚野の活動を予測する新しいベンチマークを設定している。
様々な刺激や個人に対して、堅牢なパフォーマンスと一般化を示す。
論文 参考訳(メタデータ) (2024-12-10T07:44:35Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
神経科学とAIの両方において、ニューロン間の'結合'が競合学習の形式につながることは長年知られている。
完全に接続された畳み込みや注意機構などの任意の接続設計とともに人工的再考を導入する。
このアイデアは、教師なしオブジェクト発見、敵対的ロバスト性、不確実性、推論など、幅広いタスクに性能改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Exploring Behavior-Relevant and Disentangled Neural Dynamics with Generative Diffusion Models [2.600709013150986]
行動の神経基盤を理解することは神経科学の基本的な目標である。
私たちのアプローチは、BeNeDiff'と呼ばれるもので、まずきめ細やかな神経部分空間を識別します。
次に、最先端の生成拡散モデルを使用して、各潜伏因子の神経力学を解釈する行動ビデオを合成する。
論文 参考訳(メタデータ) (2024-10-12T18:28:56Z) - BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation [6.3559178227943764]
本稿では,特権的知識蒸留による行動誘導型ニューラル人口動態モデリングフレームワークBLENDを提案する。
特権情報として行動を考えることにより、行動観察(私的特徴)と神経活動(正規特徴)の両方を入力として扱う教師モデルを訓練する。
学生モデルは神経活動のみを用いて蒸留される。
論文 参考訳(メタデータ) (2024-10-02T12:45:59Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
我々は、個々のニューロンの応答を明示的にモデル化するNDTベースのアーキテクチャであるSpatioTemporal Neural Data Transformer (STNDT)を紹介する。
本モデルは,4つのニューラルデータセット間での神経活動の推定において,アンサンブルレベルでの最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-06-09T18:54:23Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。