論文の概要: Deep Radiomics Detection of Clinically Significant Prostate Cancer on Multicenter MRI: Initial Comparison to PI-RADS Assessment
- arxiv url: http://arxiv.org/abs/2410.16238v1
- Date: Mon, 21 Oct 2024 17:41:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:16:47.431944
- Title: Deep Radiomics Detection of Clinically Significant Prostate Cancer on Multicenter MRI: Initial Comparison to PI-RADS Assessment
- Title(参考訳): 多施設MRIによる前立腺癌の深部放射線検査 : PI-RADSによる検討
- Authors: G. A. Nketiah, M. R. Sunoqrot, E. Sandsmark, S. Langørgen, K. M. Selnæs, H. Bertilsson, M. Elschot, T. F. Bathen,
- Abstract要約: 本研究は,2010年から2020年の間に取得した4つのデータセットから615例(平均年齢63.1+/-7歳)のバイパラメトリック(T2WおよびDW)前立腺MRI配列を分析した。
深部放射線学の機械学習モデルは, 病変レベルではなく, csPCa検出において, PI-RADSアセスメントに匹敵する性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Objective: To develop and evaluate a deep radiomics model for clinically significant prostate cancer (csPCa, grade group >= 2) detection and compare its performance to Prostate Imaging Reporting and Data System (PI-RADS) assessment in a multicenter cohort. Materials and Methods: This retrospective study analyzed biparametric (T2W and DW) prostate MRI sequences of 615 patients (mean age, 63.1 +/- 7 years) from four datasets acquired between 2010 and 2020: PROSTATEx challenge, Prostate158 challenge, PCaMAP trial, and an in-house (NTNU/St. Olavs Hospital) dataset. With expert annotations as ground truth, a deep radiomics model was trained, including nnU-Net segmentation of the prostate gland, voxel-wise radiomic feature extraction, extreme gradient boost classification, and post-processing of tumor probability maps into csPCa detection maps. Training involved 5-fold cross-validation using the PROSTATEx (n=199), Prostate158 (n=138), and PCaMAP (n=78) datasets, and testing on the in-house (n=200) dataset. Patient- and lesion-level performance were compared to PI-RADS using area under ROC curve (AUROC [95% CI]), sensitivity, and specificity analysis. Results: On the test data, the radiologist achieved a patient-level AUROC of 0.94 [0.91-0.98] with 94% (75/80) sensitivity and 77% (92/120) specificity at PI-RADS >= 3. The deep radiomics model at a tumor probability cut-off >= 0.76 achieved 0.91 [0.86-0.95] AUROC with 90% (72/80) sensitivity and 73% (87/120) specificity, not significantly different (p = 0.068) from PI-RADS. On the lesion level, PI-RADS cut-off >= 3 had 84% (91/108) sensitivity at 0.2 (40/200) false positives per patient, while deep radiomics attained 68% (73/108) sensitivity at the same false positive rate. Conclusion: Deep radiomics machine learning model achieved comparable performance to PI-RADS assessment in csPCa detection at the patient-level but not at the lesion-level.
- Abstract(参考訳): 目的: 臨床的に有意な前立腺癌(csPCa, grade group >= 2)検出のための深部放射線学モデルの開発と評価を行い, その性能を多施設コホートにおける前立腺イメージング報告・データシステム(PI-RADS)評価と比較する。
材料と方法: この振り返り調査は、2010年から2020年に取得した4つのデータセット(ProSTATEx Challenge、Prostate158 Challenge、PCaMAP trial、NTNU/St. Olavs Hospital)から、バイパラメトリック(T2WとDW)前立腺MRI(平均年齢63.1+/-7歳)を解析した。
前立腺のnnU-Netセグメンテーション,voxel-wise radiomic feature extract, extreme gradient boost classification, and postprocessing of tumor probability map into csPCa detection map。
PROSTATEx (n=199)、Prostate158 (n=138)、PCaMAP (n=78)のデータセットを使用して5倍のクロスバリデーションを行い、社内(n=200)のデータセットでテストした。
ROC曲線 (AUROC [95% CI]), 感度, 特異性分析を用いたPI-RADSと比較した。
結果: AUROCは94% (75/80) の感度, 77% (92/120) の特異度をPI-RADS=3。
AUROC は 90% (72/80) の感度, 73% (87/120) の特異性を有し, PI-RADS と有意差は認められなかった (p = 0.068)。
病変レベルでは, PI-RADS cut-off >= 3では, 84% (91/108) の偽陽性が0.2 (40/200) , 深部放射線検査では68% (73/108) の偽陽性が認められた。
結語:Deep Radiomics Machine Learning modelは,csPCa検出におけるPI-RADSアセスメントと同等の性能を示したが,病変レベルには及ばなかった。
関連論文リスト
- Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
患者数の増加とより包括的な診断の必要性により、病理学者は作業負荷の増大に直面している。
われわれは,全スライド画像に基づいて皮膚メラノサイト性病変をトリアージする人工知能(AI)モデルを開発した。
論文 参考訳(メタデータ) (2024-10-14T13:49:04Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - TRUSTED: The Paired 3D Transabdominal Ultrasound and CT Human Data for
Kidney Segmentation and Registration Research [42.90853857929316]
腹部超音波(US)データを用いたIMIR(Inter-modal Image registration)と画像分割は,多くの重要な臨床応用例である。
ヒト48例の経腹部3DUSとCT腎像を組み合わせたTRUSTED(Tridimensional Ultra Sound TomodEnsitometrie dataset)を提案する。
論文 参考訳(メタデータ) (2023-10-19T11:09:50Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Deep Learning for fully automatic detection, segmentation, and Gleason
Grade estimation of prostate cancer in multiparametric Magnetic Resonance
Images [0.731365367571807]
本稿では,PCa-suspect 患者から前立腺 mpMRI を抽出するDeep Learning に基づく完全自動システムを提案する。
PCaの病変を特定し、それらを分類し、最も可能性の高いGleason grade group(GGG)を予測する。
ProstateXトレーニングシステムのコードはhttps://github.com/OscarPellicer/prostate_lesion_detection.comで公開されている。
論文 参考訳(メタデータ) (2021-03-23T16:08:43Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
我々は,bp-MRIにおける前立腺内病変の検出とセグメンテーションを改善するため,ディープラーニングモデルを開発した。
前立腺切除術による脱線をMRIでトレーニングした。
前立腺切除術をベースとした非局所的なMask R-CNNは、微調整と自己訓練により、すべての評価基準を大幅に改善した。
論文 参考訳(メタデータ) (2020-10-28T21:07:09Z) - A multicenter study on radiomic features from T$_2$-weighted images of a
customized MR pelvic phantom setting the basis for robust radiomic models in
clinics [47.187609203210705]
骨盤ファントムの2Dおよび3D T$$-weightedイメージを3つのスキャナーで取得した。
放射線学的特徴の再現性と再配置を評価した。
論文 参考訳(メタデータ) (2020-05-14T09:24:48Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
胸部CT(Central Computed Tomography)において,地域肺炎(CAP)からCOVID-19を自動診断するデュアルサンプリングアテンションネットワークを開発した。
特に,3D畳み込みネットワーク(CNN)を用いた新しいオンラインアテンションモジュールを提案する。
我々のアルゴリズムは、受信機動作特性曲線(AUC)値0.944、精度87.5%、感度86.9%、特異度90.1%、F1スコア82.0%の領域で、COVID-19画像を識別することができる。
論文 参考訳(メタデータ) (2020-05-06T09:56:51Z) - Predicting the risk of pancreatic cancer with a CT-based ensemble AI
algorithm [0.0]
膵癌は致死性疾患であり、診断が困難であり、予後不良と死亡率が高い。
非造影CTによるあらゆる膵病変の普遍的癌リスクを予測するために,アンサンブルAIアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-03T06:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。