論文の概要: Steering Large Language Models using Conceptors: Improving Addition-Based Activation Engineering
- arxiv url: http://arxiv.org/abs/2410.16314v1
- Date: Wed, 09 Oct 2024 10:09:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:11:56.377733
- Title: Steering Large Language Models using Conceptors: Improving Addition-Based Activation Engineering
- Title(参考訳): 概念を用いた大規模言語モデルのステアリング:追加ベースアクティベーションエンジニアリングの改善
- Authors: Joris Postmus, Steven Abreu,
- Abstract要約: 本稿では,事前学習したLLMの出力を,推論時にその活性化を操作することによって制御する,アクティベーションエンジニアリングについて検討する。
本稿では,活性化ベクトルの集合を楕円体領域として表現する数学的構成法を提案する。
本実験は,複数のコンテキスト内学習ステアリングタスクにおいて,概念的手法が従来の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models have transformed AI, yet reliably controlling their outputs remains a challenge. This paper explores activation engineering, where outputs of pre-trained LLMs are controlled by manipulating their activations at inference time. Unlike traditional methods using a single steering vector, we introduce conceptors - mathematical constructs that represent sets of activation vectors as ellipsoidal regions. Conceptors act as soft projection matrices and offer more precise control over complex activation patterns. Our experiments demonstrate that conceptors outperform traditional methods across multiple in-context learning steering tasks. We further use Boolean operations on conceptors that allows for combined steering goals that empirically outperforms combining steering vectors on a set of tasks. These results highlight conceptors as a promising tool for more effective steering of LLMs.
- Abstract(参考訳): 大規模な言語モデルはAIを変革したが、そのアウトプットを確実に制御することは依然として困難である。
本稿では,事前学習したLLMの出力を,推論時にその活性化を操作することによって制御する,アクティベーションエンジニアリングについて検討する。
単一のステアリングベクトルを用いた従来の方法とは異なり、活性化ベクトルの集合を楕円体領域として表現する数学的構成体を導入する。
概念はソフトプロジェクション行列として機能し、複雑なアクティベーションパターンをより正確に制御する。
本実験は,複数のコンテキスト内学習ステアリングタスクにおいて,概念的手法が従来の手法よりも優れていることを示す。
さらに、一連のタスク上でのステアリングベクトルの組み合わせを経験的に上回る、統合されたステアリング目標を可能にする概念上のBoolean操作も使用しています。
これらの結果は,LLMのより効果的なステアリングのための有望なツールとして,概念を浮き彫りにしている。
関連論文リスト
- Semantics-Adaptive Activation Intervention for LLMs via Dynamic Steering Vectors [8.761404991620285]
大規模言語モデル(LLM)の行動を修正するための効果的かつ経済的手法として活性化介入が出現した。
本稿では,モデルアクティベーションを推論時に介入するための動的ステアリングベクトルを構成する新しい手法であるSemantics-Adaptive Dynamic Intervention (SADI)を提案する。
実験結果から,SADIが確立したベースラインをかなりのマージンで上回り,トレーニングなしでのタスク性能が向上した。
論文 参考訳(メタデータ) (2024-10-16T06:58:49Z) - Improving Instruction-Following in Language Models through Activation Steering [58.876600545898675]
命令固有ベクトル表現を言語モデルから導出し,それに従ってモデルをステアリングする。
提案手法は,出力形式や長さ,単語の包摂といった制約に対するモデル適合性をいかに向上させるかを示す。
本研究は,アクティベーションステアリングが言語生成におけるきめ細かい制御に実用的でスケーラブルなアプローチを提供することを示す。
論文 参考訳(メタデータ) (2024-10-15T08:38:20Z) - Vector-ICL: In-context Learning with Continuous Vector Representations [75.96920867382859]
大規模言語モデル (LLM) はテキストデータに顕著なコンテキスト内学習能力を示す。
ブラックボックス事前学習エンコーダから得られる様々な領域から連続ベクトルに拡張できるかどうかを検討する。
特に,汎用言語モデリング目的のプロジェクタを事前学習することで,Vector-ICLの実現が期待できる。
論文 参考訳(メタデータ) (2024-10-08T02:25:38Z) - Personalized Steering of Large Language Models: Versatile Steering Vectors Through Bi-directional Preference Optimization [34.05163996072159]
人選好データのアクティベーションから「ステアリングベクトル」を抽出する。
この研究は、双方向の選好最適化によってより効果的なステアリングベクトルを生み出すことができる革新的なアプローチを提案する。
提案手法は, ステアリングベクトルが人間の嗜好データペアの生成確率に直接影響を与えるように設計されている。
論文 参考訳(メタデータ) (2024-05-28T05:10:40Z) - Improving Activation Steering in Language Models with Mean-Centring [10.101141087916133]
目標データセットに関連付けられたアクティベーションの平均値と、トレーニングアクティベーションの平均値を減じることで、効果的なステアリングベクトルが得られることがわかった。
また、関数ベクトルを抽出するために平均セントリングを適用し、より効果的に自然言語タスクの実行を顕著なマージンでトリガーする。
論文 参考訳(メタデータ) (2023-12-06T18:27:07Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Augmented Language Models: a Survey [55.965967655575454]
この調査は、言語モデル(LM)が推論スキルとツールの使用能力で強化されているかのレビューを行う。
私たちはこれらをAugmented Language Models (ALMs)と呼ぶ。
トークンの目的の欠如により、ALMは標準的な自然言語タスクを実行しながら、推論、ツールの使用、さらには行動を学ぶことができる。
論文 参考訳(メタデータ) (2023-02-15T18:25:52Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill
Primitives [89.34229413345541]
本稿では,制御器とその条件をエンドツーエンドに学習することで,落とし穴を回避する条件付け手法を提案する。
本モデルでは,ロボットの動きのダイナミックな画像表現に基づいて,複雑な動作シーケンスを予測する。
代表的MPCおよびILベースラインに対するタスク成功の大幅な改善を報告した。
論文 参考訳(メタデータ) (2020-03-19T15:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。