Designing Robust Cyber-Defense Agents with Evolving Behavior Trees
- URL: http://arxiv.org/abs/2410.16383v1
- Date: Mon, 21 Oct 2024 18:00:38 GMT
- Title: Designing Robust Cyber-Defense Agents with Evolving Behavior Trees
- Authors: Nicholas Potteiger, Ankita Samaddar, Hunter Bergstrom, Xenofon Koutsoukos,
- Abstract summary: We develop an approach to design autonomous cyber defense agents using behavior trees with learning-enabled components.
Learning-enabled components are optimized for adapting to various cyber-attacks and deploying security mechanisms.
Our results demonstrate that the EBT-based agent is robust to adaptive cyber-attacks and provides high-level explanations for interpreting its decisions and actions.
- Score: 0.0
- License:
- Abstract: Modern network defense can benefit from the use of autonomous systems, offloading tedious and time-consuming work to agents with standard and learning-enabled components. These agents, operating on critical network infrastructure, need to be robust and trustworthy to ensure defense against adaptive cyber-attackers and, simultaneously, provide explanations for their actions and network activity. However, learning-enabled components typically use models, such as deep neural networks, that are not transparent in their high-level decision-making leading to assurance challenges. Additionally, cyber-defense agents must execute complex long-term defense tasks in a reactive manner that involve coordination of multiple interdependent subtasks. Behavior trees are known to be successful in modelling interpretable, reactive, and modular agent policies with learning-enabled components. In this paper, we develop an approach to design autonomous cyber defense agents using behavior trees with learning-enabled components, which we refer to as Evolving Behavior Trees (EBTs). We learn the structure of an EBT with a novel abstract cyber environment and optimize learning-enabled components for deployment. The learning-enabled components are optimized for adapting to various cyber-attacks and deploying security mechanisms. The learned EBT structure is evaluated in a simulated cyber environment, where it effectively mitigates threats and enhances network visibility. For deployment, we develop a software architecture for evaluating EBT-based agents in computer network defense scenarios. Our results demonstrate that the EBT-based agent is robust to adaptive cyber-attacks and provides high-level explanations for interpreting its decisions and actions.
Related papers
- Hierarchical Multi-agent Reinforcement Learning for Cyber Network Defense [7.967738380932909]
We propose a hierarchical Proximal Policy Optimization (PPO) architecture that decomposes the cyber defense task into specific sub-tasks like network investigation and host recovery.
Our approach involves training sub-policies for each sub-task using PPO enhanced with domain expertise.
These sub-policies are then leveraged by a master defense policy that coordinates their selection to solve complex network defense tasks.
arXiv Detail & Related papers (2024-10-22T18:35:05Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
arXiv Detail & Related papers (2024-10-11T15:15:09Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Adaptive Artificial Immune Networks for Mitigating DoS flooding Attacks [13.580747080271825]
This paper proposes the use of artificial immune systems to mitigate denial of service attacks.
The approach is based on building networks of distributed sensors suited to the requirements of the monitored environment.
arXiv Detail & Related papers (2024-02-12T15:26:37Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Realistic simulation of users for IT systems in cyber ranges [63.20765930558542]
We instrument each machine by means of an external agent to generate user activity.
This agent combines both deterministic and deep learning based methods to adapt to different environment.
We also propose conditional text generation models to facilitate the creation of conversations and documents.
arXiv Detail & Related papers (2021-11-23T10:53:29Z) - Autonomous Attack Mitigation for Industrial Control Systems [25.894883701063055]
Defending computer networks from cyber attack requires timely responses to alerts and threat intelligence.
We present a deep reinforcement learning approach to autonomous response and recovery in large industrial control networks.
arXiv Detail & Related papers (2021-11-03T18:08:06Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Deep hierarchical reinforcement agents for automated penetration testing [0.0]
This paper presents a novel deep reinforcement learning architecture with hierarchically structured agents called HA-DRL.
The proposed architecture is shown to find the optimal attacking policy faster and more stably than a conventional deep Q-learning agent.
arXiv Detail & Related papers (2021-09-14T05:28:22Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.