論文の概要: Data Augmentation of Multivariate Sensor Time Series using Autoregressive Models and Application to Failure Prognostics
- arxiv url: http://arxiv.org/abs/2410.16419v1
- Date: Mon, 21 Oct 2024 18:38:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:26.378910
- Title: Data Augmentation of Multivariate Sensor Time Series using Autoregressive Models and Application to Failure Prognostics
- Title(参考訳): 自己回帰モデルを用いた多変量センサ時系列データの増大と故障診断への応用
- Authors: Douglas Baptista de Souza, Bruno Paes Leao,
- Abstract要約: 本研究では,非定常多変量時系列に対する新しいデータ拡張解とその故障診断への応用について述べる。
限られたサンプルから鍵情報を抽出し、PHM溶液の性能を向上させる方法として新しい合成サンプルを生成するために使用できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This work presents a novel data augmentation solution for non-stationary multivariate time series and its application to failure prognostics. The method extends previous work from the authors which is based on time-varying autoregressive processes. It can be employed to extract key information from a limited number of samples and generate new synthetic samples in a way that potentially improves the performance of PHM solutions. This is especially valuable in situations of data scarcity which are very usual in PHM, especially for failure prognostics. The proposed approach is tested based on the CMAPSS dataset, commonly employed for prognostics experiments and benchmarks. An AutoML approach from PHM literature is employed for automating the design of the prognostics solution. The empirical evaluation provides evidence that the proposed method can substantially improve the performance of PHM solutions.
- Abstract(参考訳): 本研究では,非定常多変量時系列に対する新しいデータ拡張解とその故障診断への応用について述べる。
この方法は、時間変化の自己回帰プロセスに基づく著者からの以前の作業を拡張する。
限られたサンプルから鍵情報を抽出し、PHM溶液の性能を向上させる方法として新しい合成サンプルを生成するために使用できる。
これは、PHMでよく見られるデータ不足の状況、特に故障の予後に特に有用である。
提案手法はCMAPSSデータセットに基づいてテストされる。
PHM文献からのAutoMLアプローチは、診断ソリューションの設計を自動化するために使用される。
実験により,提案手法がPHM溶液の性能を大幅に向上できることを示す。
関連論文リスト
- Scalable Signature-Based Distribution Regression via Reference Sets [1.8980236415886387]
パスシグネチャは、シグネチャベースの機能を通じてパスに符号化された情報を活用するために使用される。
アートDRソリューションの現在の状態は、メモリ集約的で、高コストである。
この計算ボトルネックは、アプリケーションを小さなサンプルサイズに制限する。
本稿では,上記の問題に対処する手法を提案する。
また,多様な学習タスクにDRを使用できるパイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-11T18:58:28Z) - A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models [63.949883238901414]
本稿では,損失関数の勾配解析の特異な角度について述べる。
ExMATEはMLEの優れたサロゲートであり,DPOとMLEの代わりにExMATEを組み合わせることで,統計的(5-7%)と生成的(+18%)の性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-29T17:46:18Z) - High Rank Path Development: an approach of learning the filtration of stochastic processes [6.245824251614165]
そこで我々は,HRPCFD(High Rank PCF Distance)と呼ばれる新しい尺度を導入する。
そして、そのようなHRPCFDは、データからHRPCFDを訓練し、HRPCF-GANを構築するための効率的なアルゴリズムを設計できるように、多くの好意的な解析特性を許容していることを示す。
仮説テストと生成モデルの両方に関する数値実験は、いくつかの最先端手法と比較して、我々のアプローチのアウトパフォーマンスを検証している。
論文 参考訳(メタデータ) (2024-05-23T13:20:47Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
既存のカスタマイズ方法は、事前訓練された拡散確率モデルをユーザが提供する概念に合わせるために、複数の参照例にアクセスする必要がある。
本論文は、DPMカスタマイズの課題として、生成コンテンツ上で定義された差別化可能な指標が唯一利用可能な監督基準である場合に解決することを目的とする。
本稿では,拡散モデルから新しいサンプルを初めて生成するAdjointDPMを提案する。
次に、随伴感度法を用いて、損失の勾配をモデルのパラメータにバックプロパゲートする。
論文 参考訳(メタデータ) (2023-07-20T09:06:21Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Automatically Differentiable Random Coefficient Logistic Demand
Estimation [0.0]
本稿では, ランダム係数ロジスティック・デマンド(BLP)モデルを, 自動微分可能なモーメント関数として表現する方法を示す。
これにより、CUE(Continuously Updating Estimator)を用いた勾配に基づく周期性および準ベイズ推定が可能となる。
予備的な結果は、LTEと頻繁な最適化を用いて推定したCUEは、従来の2段階のGMM(2S-GMM)アプローチと比較して、より低いバイアスを持つが、MAEが高いことを示唆している。
論文 参考訳(メタデータ) (2021-06-08T18:50:11Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Efficient Estimation and Evaluation of Prediction Rules in
Semi-Supervised Settings under Stratified Sampling [6.930951733450623]
本稿では,2段階の半教師付き学習(SSL)手法を提案する。
ステップIでは、非ランダムサンプリングを考慮した非線形基底関数による重み付き回帰により、欠落ラベルをインプットする。
ステップIIでは、結果の予測器の整合性を確保するために、初期計算を増強する。
論文 参考訳(メタデータ) (2020-10-19T12:54:45Z) - Robust Q-learning [0.0]
データ適応手法を用いてニュアンスパラメータを推定できる頑健なQ-ラーニング手法を提案する。
本研究は,提案手法の必要性と有用性を明らかにするためのシミュレーション研究である。
論文 参考訳(メタデータ) (2020-03-27T14:10:38Z) - Improving a State-of-the-Art Heuristic for the Minimum Latency Problem
with Data Mining [69.00394670035747]
ハイブリッドメタヒューリスティックスは、オペレーション研究のトレンドとなっている。
成功例は、Greedy Randomized Adaptive Search Procedures (GRASP)とデータマイニング技術を組み合わせたものだ。
論文 参考訳(メタデータ) (2019-08-28T13:12:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。