論文の概要: General Frameworks for Conditional Two-Sample Testing
- arxiv url: http://arxiv.org/abs/2410.16636v1
- Date: Tue, 22 Oct 2024 02:27:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:40.925608
- Title: General Frameworks for Conditional Two-Sample Testing
- Title(参考訳): 条件付き2サンプルテストのための一般的なフレームワーク
- Authors: Seongchan Lee, Suman Cha, Ilmun Kim,
- Abstract要約: 本研究では, 条件付き2サンプル検定の問題点について検討し, 条件付き2サンプル検定の問題点について考察した。
この問題は、ドメイン適応やアルゴリズムフェアネスなど、様々な応用で一般的に発生する。
本稿では,その妥当性と能力について,分布の特定のクラスを暗黙的に,あるいは明示的にターゲットとする2つの一般的なフレームワークを紹介する。
- 参考スコア(独自算出の注目度): 3.3317825075368908
- License:
- Abstract: We study the problem of conditional two-sample testing, which aims to determine whether two populations have the same distribution after accounting for confounding factors. This problem commonly arises in various applications, such as domain adaptation and algorithmic fairness, where comparing two groups is essential while controlling for confounding variables. We begin by establishing a hardness result for conditional two-sample testing, demonstrating that no valid test can have significant power against any single alternative without proper assumptions. We then introduce two general frameworks that implicitly or explicitly target specific classes of distributions for their validity and power. Our first framework allows us to convert any conditional independence test into a conditional two-sample test in a black-box manner, while preserving the asymptotic properties of the original conditional independence test. The second framework transforms the problem into comparing marginal distributions with estimated density ratios, which allows us to leverage existing methods for marginal two-sample testing. We demonstrate this idea in a concrete manner with classification and kernel-based methods. Finally, simulation studies are conducted to illustrate the proposed frameworks in finite-sample scenarios.
- Abstract(参考訳): 本研究では, 条件付き2サンプル検定の問題点について検討し, 条件付き2サンプル検定の問題点について考察した。
この問題は、ドメイン適応やアルゴリズムフェアネス(英語版)のような様々な応用で一般的に起こり、2つの群の比較が変数の共役を制御している間に必須である。
まず、条件付き2サンプルテストの硬度結果を確立し、妥当なテストが適切な仮定なしに任意の選択肢に対して有意な力を持つことを実証する。
次に、その妥当性とパワーのために、特定の分布のクラスを暗黙的または明示的にターゲットする2つの一般的なフレームワークを紹介します。
最初の枠組みでは,条件付き独立試験の漸近特性を保ちながら,条件付き2サンプル試験をブラックボックス方式で条件付き独立試験に変換することができる。
第2の枠組みは, 限界分布と推定密度比を比較し, 限界二サンプル試験の既存手法を活用できるようにする。
我々は、このアイデアを、分類法とカーネルベースの手法で具体的に示す。
最後に,有限サンプルシナリオで提案するフレームワークについて,シミュレーション研究を行った。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Credal Two-Sample Tests of Epistemic Ignorance [34.42566984003255]
干潟集合を比較するための新しい仮説テストフレームワークである干潟2サンプル試験を導入する。
両サンプル試験を一般化して, 対等性, 包摂性, 交叉性, 相互排他性の推論を可能にする。
論文 参考訳(メタデータ) (2024-10-16T18:09:09Z) - Conditional Testing based on Localized Conformal p-values [5.6779147365057305]
我々は、予測区間を反転させて局所化された共形p値を定義し、それらの理論的性質を証明した。
これらの定義されたp-値は、その実用性を説明するためにいくつかの条件付きテスト問題に適用される。
論文 参考訳(メタデータ) (2024-09-25T11:30:14Z) - Deep anytime-valid hypothesis testing [29.273915933729057]
非パラメトリックなテスト問題に対する強力なシーケンシャルな仮説テストを構築するための一般的なフレームワークを提案する。
テスト・バイ・ベッティング・フレームワーク内で、機械学習モデルの表現能力を活用するための原則的なアプローチを開発する。
合成および実世界のデータセットに関する実証的な結果は、我々の一般的なフレームワークを用いてインスタンス化されたテストが、特殊なベースラインと競合することを示している。
論文 参考訳(メタデータ) (2023-10-30T09:46:19Z) - Sequential Predictive Two-Sample and Independence Testing [114.4130718687858]
逐次的非パラメトリック2サンプルテストと独立テストの問題点について検討する。
私たちは賭けによる(非パラメトリックな)テストの原則に基づいています。
論文 参考訳(メタデータ) (2023-04-29T01:30:33Z) - Active Sequential Two-Sample Testing [18.99517340397671]
サンプル測定が安価に利用できる新しいシナリオでは,この2サンプルテストの問題を考慮する。
我々は,emphactiveNIST-sampleテストフレームワークを考案し,逐次クエリだけでなく,emphactivelyクエリも考案した。
実際に、我々はフレームワークのインスタンス化を導入し、いくつかの実験を用いて評価する。
論文 参考訳(メタデータ) (2023-01-30T02:23:49Z) - Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
本稿では,2段階のクリーンサンプル識別手法を提案する。
まず,クリーンサンプルの早期同定にクラスレベルの特徴クラスタリング手法を用いる。
次に, 基底真理クラス境界に近い残余のクリーンサンプルについて, 一貫性に基づく新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-07-29T04:54:57Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Comparing two samples through stochastic dominance: a graphical approach [2.867517731896504]
実世界のシナリオでは非決定論的測定が一般的である。
推定累積分布関数に従って2つのサンプルを視覚的に比較するフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-15T13:37:03Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - Two-Sample Testing on Ranked Preference Data and the Role of Modeling
Assumptions [57.77347280992548]
本稿では,ペアワイズ比較データとランキングデータのための2サンプル試験を設計する。
私たちのテストでは、基本的に分布に関する仮定は必要ありません。
実世界のペアワイズ比較データに2サンプルテストを適用することで、人によって提供される評価とランキングは、実際は異なる分散である、と結論付ける。
論文 参考訳(メタデータ) (2020-06-21T20:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。