TopoDiffusionNet: A Topology-aware Diffusion Model
- URL: http://arxiv.org/abs/2410.16646v1
- Date: Tue, 22 Oct 2024 02:45:46 GMT
- Title: TopoDiffusionNet: A Topology-aware Diffusion Model
- Authors: Saumya Gupta, Dimitris Samaras, Chao Chen,
- Abstract summary: Diffusion models excel at creating visually impressive images but often struggle to generate images with a specified topology.
TopoDiffusionNet (TDN) is a novel approach that enforces diffusion models to maintain the desired topology.
Our experiments across four datasets demonstrate significant improvements in topological accuracy.
- Score: 30.091135276750506
- License:
- Abstract: Diffusion models excel at creating visually impressive images but often struggle to generate images with a specified topology. The Betti number, which represents the number of structures in an image, is a fundamental measure in topology. Yet, diffusion models fail to satisfy even this basic constraint. This limitation restricts their utility in applications requiring exact control, like robotics and environmental modeling. To address this, we propose TopoDiffusionNet (TDN), a novel approach that enforces diffusion models to maintain the desired topology. We leverage tools from topological data analysis, particularly persistent homology, to extract the topological structures within an image. We then design a topology-based objective function to guide the denoising process, preserving intended structures while suppressing noisy ones. Our experiments across four datasets demonstrate significant improvements in topological accuracy. TDN is the first to integrate topology with diffusion models, opening new avenues of research in this area.
Related papers
- Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
Diffusion models are trained to generate new geological realizations from input fields characterized by random noise.
Latent diffusion models are shown to provide realizations that are visually consistent with samples from geomodeling software.
arXiv Detail & Related papers (2024-06-21T01:32:03Z) - A Phase Transition in Diffusion Models Reveals the Hierarchical Nature
of Data [55.748186000425996]
Recent advancements show that diffusion models can generate high-quality images.
We study this phenomenon in a hierarchical generative model of data.
Our analysis characterises the relationship between time and scale in diffusion models.
arXiv Detail & Related papers (2024-02-26T19:52:33Z) - Semi-supervised Segmentation of Histopathology Images with Noise-Aware Topological Consistency [11.783112213482632]
We propose TopoSemiSeg, the first semi-supervised method that learns the topological representation from unlabeled images.
We introduce a noise-aware topological consistency loss to align the representations of a teacher and a student model.
Experiments on public histopathology image datasets show the superiority of our method.
arXiv Detail & Related papers (2023-11-28T03:04:35Z) - Lightweight Diffusion Models with Distillation-Based Block Neural
Architecture Search [55.41583104734349]
We propose to automatically remove structural redundancy in diffusion models with our proposed Diffusion Distillation-based Block-wise Neural Architecture Search (NAS)
Given a larger pretrained teacher, we leverage DiffNAS to search for the smallest architecture which can achieve on-par or even better performance than the teacher.
Different from previous block-wise NAS methods, DiffNAS contains a block-wise local search strategy and a retraining strategy with a joint dynamic loss.
arXiv Detail & Related papers (2023-11-08T12:56:59Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Deep Networks as Denoising Algorithms: Sample-Efficient Learning of
Diffusion Models in High-Dimensional Graphical Models [22.353510613540564]
We investigate the approximation efficiency of score functions by deep neural networks in generative modeling.
We observe score functions can often be well-approximated in graphical models through variational inference denoising algorithms.
We provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks.
arXiv Detail & Related papers (2023-09-20T15:51:10Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Infinite-Dimensional Diffusion Models [4.342241136871849]
We formulate diffusion-based generative models in infinite dimensions and apply them to the generative modeling of functions.
We show that our formulations are well posed in the infinite-dimensional setting and provide dimension-independent distance bounds from the sample to the target measure.
We also develop guidelines for the design of infinite-dimensional diffusion models.
arXiv Detail & Related papers (2023-02-20T18:00:38Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Image Embedding for Denoising Generative Models [0.0]
We focus on Denoising Diffusion Implicit Models due to the deterministic nature of their reverse diffusion process.
As a side result of our investigation, we gain a deeper insight into the structure of the latent space of diffusion models.
arXiv Detail & Related papers (2022-12-30T17:56:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.