Typical Quantum States of the Universe are Observationally Indistinguishable
- URL: http://arxiv.org/abs/2410.16860v1
- Date: Tue, 22 Oct 2024 09:59:57 GMT
- Title: Typical Quantum States of the Universe are Observationally Indistinguishable
- Authors: Eddy Keming Chen, Roderich Tumulka,
- Abstract summary: We show that, if the universal quantum state can be assumed to be a typical unit vector from a high-dimensional subspace of Hilbert space, no observation can determine which vector it is.
Our argument is based on a typicality from quantum statistical mechanics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is about the epistemology of quantum theory. We establish a new result about a limitation to knowledge of its central object -- the quantum state of the universe. We show that, if the universal quantum state can be assumed to be a typical unit vector from a high-dimensional subspace of Hilbert space (such as the subspace defined by a low-entropy macro-state as prescribed by the Past Hypothesis), then no observation can determine (or even just narrow down significantly) which vector it is. Typical state vectors, in other words, are observationally indistinguishable from each other. Our argument is based on a typicality theorem from quantum statistical mechanics. We also discuss how theoretical considerations that go beyond the empirical evidence might bear on this fact and on our knowledge of the universal quantum state.
Related papers
- Quantum Probability Geometrically Realized in Projective Space [0.0]
This paper aims to pass all quantum probability formulas to the projective space associated to the complex Hilbert space of a given quantum system.
The upshot is that quantum theory is the probability theory of projective subspaces, or equivalently, of quantum events.
arXiv Detail & Related papers (2024-10-23T20:29:15Z) - Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - A Universal Quantum Certainty Relation for Arbitrary Number of
Observables [0.0]
We derive by lattice theory a universal quantum certainty relation for arbitrary $M$ observables in $N$-dimensional system.
We find that one cannot prepare a quantum state with PDVs of incompatible observables spreading out arbitrarily.
arXiv Detail & Related papers (2023-08-10T16:44:10Z) - The Relation between Wavefunction and 3D Space Implies Many Worlds with
Local Beables and Probabilities [0.0]
We show that the quantum wavefunctional can be seen as a set of classical fields on the 3D space aggregated by a measure.
We obtain a complete description of the wavefunctional in terms of classical local beables.
arXiv Detail & Related papers (2023-06-27T12:22:41Z) - Characterizing the superposition of arbitrary random quantum states and
a known quantum state [5.316931601243777]
We investigate the superposition problem of unknown qubit states with respect to a known qubit state.
Under trace-nonincreasing completely positive operations the superposable state sets are located in some circles on the Bloch sphere.
For the high-dimensional case, we illustrate that any superposition transformation protocols will violate the no-cloning principle for almost all the states.
arXiv Detail & Related papers (2023-05-11T01:31:34Z) - Detection of Beyond-Quantum Non-locality based on Standard Local Quantum
Observables [46.03321798937856]
We show that device independent detection cannot distinguish beyond-quantum non-local states from standard quantum states.
This paper gives a device dependent detection based on local observables to distinguish any beyond-quantum non-local state from all standard quantum states.
arXiv Detail & Related papers (2023-01-10T20:19:34Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Measurement and Probability in Relativistic Quantum Mechanics [0.0]
The present paper addresses with a relativistic model of measurement in which the state of the universe is decomposed into decoherent histories of measurements recorded within it.<n>It gives an objective definition of the probability of any one of the quantum histories, consistent with Born's rule.<n>The wave functions that we actually use for such experiments are local reductions of very coarse-grained superpositions of universal eigenstates.
arXiv Detail & Related papers (2022-09-26T04:21:52Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - On the Interpretation of Quantum Indistinguishability : a No-Go Theorem [0.0]
Physicists are yet to reach a consensus on the interpretation of a quantum wavefunction.
We show that quantum mechanical prediction of maximal violation of Mermin inequality is incompatible with all ontological interpretations for quantum theory.
arXiv Detail & Related papers (2022-04-20T18:39:25Z) - Is spacetime quantum? [0.0]
We show a theorem stating that spacetime degrees of freedom and a quantum system violate a Bell inequality in a background Minkowski spacetime.
We argue that this implies that spacetime cannot be sensibly called classical if the assumptions in our theorem hold.
arXiv Detail & Related papers (2021-09-06T17:13:51Z) - Generalized Probabilistic Theories in a New Light [0.0]
A new answer to the question of why our universe is quantum mechanical rather than classical will be presented.
This paper shows that there is still a possibility that there might be a deterministic level from which our universe emerges.
arXiv Detail & Related papers (2021-03-08T21:28:19Z) - The principle of majorization: application to random quantum circuits [68.8204255655161]
Three classes of circuits were considered: (i) universal, (ii) classically simulatable, and (iii) neither universal nor classically simulatable.
We verified that all the families of circuits satisfy on average the principle of majorization.
Clear differences appear in the fluctuations of the Lorenz curves associated to states.
arXiv Detail & Related papers (2021-02-19T16:07:09Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Is the standard quantum mechanics a completely nondeterministic theory? [0.0]
It is argued that although quantum theory isn't an absolutely deterministic theory, it is partially deterministic.
The argument is based on the conceptual meaning of determinism and by means of some well-known phenomena in the quantum world.
arXiv Detail & Related papers (2020-07-04T14:48:13Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum resource covariance [0.0]
Since the dawn of quantum mechanics there is no consensus on what the theory is all about.
We construct a theoretical framework within which a given combination of quantum resources is shown to be a Galilean invariant.
We show that the notion of physical reality implied by quantum mechanics is not absolute.
arXiv Detail & Related papers (2020-05-19T17:34:11Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.