Responsible Multilingual Large Language Models: A Survey of Development, Applications, and Societal Impact
- URL: http://arxiv.org/abs/2410.17532v1
- Date: Wed, 23 Oct 2024 03:19:15 GMT
- Title: Responsible Multilingual Large Language Models: A Survey of Development, Applications, and Societal Impact
- Authors: Junhua Liu, Bin Fu,
- Abstract summary: This work bridges the gap by providing an end-to-end framework for developing and deploying MLLMs in production environments.
Our findings reveal critical challenges in supporting linguistic diversity, with 88.38% of world languages categorized as low-resource.
This survey provides essential guidance for practitioners and researchers working to develop more inclusive and effective multilingual AI systems.
- Score: 5.803667039914564
- License:
- Abstract: Multilingual Large Language Models (MLLMs) represent a pivotal advancement in democratizing artificial intelligence across linguistic boundaries. While theoretical foundations are well-established, practical implementation guidelines remain scattered. This work bridges this gap by providing a comprehensive end-to-end framework for developing and deploying MLLMs in production environments. We make three distinctive contributions: First, we present an actionable pipeline from data pre-processing through deployment, integrating insights from academic research and industrial applications. Second, using Llama2 as a case study, we provide detailed optimization strategies for enhancing multilingual capabilities, including curriculum learning approaches for balancing high-resource and low-resource languages, tokenization strategies, and effective sampling methods. Third, we offer an interdisciplinary analysis that considers technical, linguistic, and cultural perspectives in MLLM development. Our findings reveal critical challenges in supporting linguistic diversity, with 88.38% of world languages categorized as low-resource, affecting over a billion speakers. We examine practical solutions through real-world applications in customer service, search engines, and machine translation. By synthesizing theoretical frameworks with production-ready implementation strategies, this survey provides essential guidance for practitioners and researchers working to develop more inclusive and effective multilingual AI systems.
Related papers
- LLM for Everyone: Representing the Underrepresented in Large Language Models [21.07409393578553]
This thesis aims to bridge the gap in NLP research and development by focusing on underrepresented languages.
A comprehensive evaluation of large language models (LLMs) is conducted to assess their capabilities in these languages.
The proposed solutions cover cross-lingual continual instruction tuning, retrieval-based cross-lingual in-context learning, and in-context query alignment.
arXiv Detail & Related papers (2024-09-20T20:53:22Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [48.314619377988436]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - SUTRA: Scalable Multilingual Language Model Architecture [5.771289785515227]
We introduce SUTRA, a multilingual Large Language Model architecture capable of understanding, reasoning, and generating text in over 50 languages.
Through extensive evaluations, SUTRA is demonstrated to surpass existing models like GPT-3.5, Llama2 by 20-30% on leading Massive Multitask Language Understanding (MMLU) benchmarks.
Our findings suggest that SUTRA not only fills pivotal gaps in multilingual model capabilities but also establishes a new benchmark for operational efficiency and scalability in AI applications.
arXiv Detail & Related papers (2024-05-07T20:11:44Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias [5.104497013562654]
We present an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities.
We explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks.
We discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques.
arXiv Detail & Related papers (2024-04-01T05:13:56Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Breaking Language Barriers with a LEAP: Learning Strategies for Polyglot
LLMs [5.682384717239095]
Large language models (LLMs) are at the forefront of transforming numerous domains globally.
This paper tackles the imperative challenge of enhancing the multilingual performance of LLMs.
We present novel techniques that unlock the true potential of LLMs in a polyglot landscape.
arXiv Detail & Related papers (2023-05-28T14:48:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.