Adversarial Domain Adaptation for Metal Cutting Sound Detection: Leveraging Abundant Lab Data for Scarce Industry Data
- URL: http://arxiv.org/abs/2410.17574v1
- Date: Wed, 23 Oct 2024 05:55:21 GMT
- Title: Adversarial Domain Adaptation for Metal Cutting Sound Detection: Leveraging Abundant Lab Data for Scarce Industry Data
- Authors: Mir Imtiaz Mostafiz, Eunseob Kim, Adrian Shuai Li, Elisa Bertino, Martin Byung-Guk Jun, Ali Shakouri,
- Abstract summary: Cutting sound detection using machine learning (ML) models can be employed as a cost-effective and non-intrusive monitoring method.
We propose a novel adversarial domain adaptation (DA) approach to leverage abundant lab data to learn from scarce industry data.
Our models outperformed the multi-layer perceptron based vanilla domain adaptation models in labeling tasks on curated datasets.
- Score: 8.493339928079218
- License:
- Abstract: Cutting state monitoring in the milling process is crucial for improving manufacturing efficiency and tool life. Cutting sound detection using machine learning (ML) models, inspired by experienced machinists, can be employed as a cost-effective and non-intrusive monitoring method in a complex manufacturing environment. However, labeling industry data for training is costly and time-consuming. Moreover, industry data is often scarce. In this study, we propose a novel adversarial domain adaptation (DA) approach to leverage abundant lab data to learn from scarce industry data, both labeled, for training a cutting-sound detection model. Rather than adapting the features from separate domains directly, we project them first into two separate latent spaces that jointly work as the feature space for learning domain-independent representations. We also analyze two different mechanisms for adversarial learning where the discriminator works as an adversary and a critic in separate settings, enabling our model to learn expressive domain-invariant and domain-ingrained features, respectively. We collected cutting sound data from multiple sensors in different locations, prepared datasets from lab and industry domain, and evaluated our learning models on them. Experiments showed that our models outperformed the multi-layer perceptron based vanilla domain adaptation models in labeling tasks on the curated datasets, achieving near 92%, 82% and 85% accuracy respectively for three different sensors installed in industry settings.
Related papers
- MDM: Advancing Multi-Domain Distribution Matching for Automatic Modulation Recognition Dataset Synthesis [35.07663680944459]
Deep learning technology has been successfully introduced into Automatic Modulation Recognition (AMR) tasks.
The success of deep learning is all attributed to the training on large-scale datasets.
In order to solve the problem of large amount of data, some researchers put forward the method of data distillation.
arXiv Detail & Related papers (2024-08-05T14:16:54Z) - A deep latent variable model for semi-supervised multi-unit soft sensing in industrial processes [0.0]
We introduce a deep latent variable model for semi-supervised multi-unit soft sensing.
This hierarchical, generative model is able to jointly model different units, as well as learning from both labeled and unlabeled data.
We show that by combining semi-supervised and multi-task learning, the proposed model achieves superior results.
arXiv Detail & Related papers (2024-07-18T09:13:22Z) - IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
Video anomaly detection (VAD) is a challenging task aiming to recognize anomalies in video frames.
We propose a new dataset, IPAD, specifically designed for VAD in industrial scenarios.
This dataset covers 16 different industrial devices and contains over 6 hours of both synthetic and real-world video footage.
arXiv Detail & Related papers (2024-04-23T13:38:01Z) - HaDR: Applying Domain Randomization for Generating Synthetic Multimodal
Dataset for Hand Instance Segmentation in Cluttered Industrial Environments [0.0]
This study uses domain randomization to generate a synthetic RGB-D dataset for training multimodal instance segmentation models.
We show that our approach enables the models to outperform corresponding models trained on existing state-of-the-art datasets.
arXiv Detail & Related papers (2023-04-12T13:02:08Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Ensemble of Discriminators for Domain Adaptation in Multiple Sound
Source 2D Localization [7.564344795030588]
This paper introduces an ensemble of discriminators that improves the accuracy of a domain adaptation technique for the localization of multiple sound sources.
Recording and labeling such datasets is very costly, especially because data needs to be diverse enough to cover different acoustic conditions.
arXiv Detail & Related papers (2020-12-10T09:17:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.