論文の概要: Bridging the Gaps: Utilizing Unlabeled Face Recognition Datasets to Boost Semi-Supervised Facial Expression Recognition
- arxiv url: http://arxiv.org/abs/2410.17622v1
- Date: Wed, 23 Oct 2024 07:26:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:50.842604
- Title: Bridging the Gaps: Utilizing Unlabeled Face Recognition Datasets to Boost Semi-Supervised Facial Expression Recognition
- Title(参考訳): ギャップを埋める: ラベルなしの顔認識データセットを利用して、半スーパービジョンの表情認識を増強する
- Authors: Jie Song, Mengqiao He, Jinhua Feng, Bairong Shen,
- Abstract要約: 我々は、半教師付きFERを高めるために、大きな未ラベルの顔認識(FR)データセットを活用することに重点を置いている。
具体的には,アノテーションを使わずに大規模な顔画像の事前訓練を行う。
ラベル付き画像や多彩な画像の不足を緩和するために、Mixupベースのデータ拡張戦略を提案する。
- 参考スコア(独自算出の注目度): 5.750927184237346
- License:
- Abstract: In recent years, Facial Expression Recognition (FER) has gained increasing attention. Most current work focuses on supervised learning, which requires a large amount of labeled and diverse images, while FER suffers from the scarcity of large, diverse datasets and annotation difficulty. To address these problems, we focus on utilizing large unlabeled Face Recognition (FR) datasets to boost semi-supervised FER. Specifically, we first perform face reconstruction pre-training on large-scale facial images without annotations to learn features of facial geometry and expression regions, followed by two-stage fine-tuning on FER datasets with limited labels. In addition, to further alleviate the scarcity of labeled and diverse images, we propose a Mixup-based data augmentation strategy tailored for facial images, and the loss weights of real and virtual images are determined according to the intersection-over-union (IoU) of the faces in the two images. Experiments on RAF-DB, AffectNet, and FERPlus show that our method outperforms existing semi-supervised FER methods and achieves new state-of-the-art performance. Remarkably, with only 5%, 25% training sets,our method achieves 64.02% on AffectNet,and 88.23% on RAF-DB, which is comparable to fully supervised state-of-the-art methods. Codes will be made publicly available at https://github.com/zhelishisongjie/SSFER.
- Abstract(参考訳): 近年,表情認識(FER)が注目されている。
FERは大規模で多様なデータセットの不足とアノテーションの難しさに悩まされている。
これらの問題に対処するために、我々は、半教師付きFERを高めるために、大規模な未ラベルの顔認識(FR)データセットを活用することに重点を置いている。
具体的には,顔形状や表情領域の特徴を学習するためにアノテーションを使わずに,大規模な顔画像の顔再構成前訓練を行い,その後,限定ラベル付きFERデータセットを2段階微調整する。
さらに,ラベル付き画像と多彩な画像の不足を軽減するために,顔画像に適したミックスアップベースのデータ拡張戦略を提案し,両画像の顔の交叉結合(IoU)に基づいて実画像と仮想画像の損失重みを決定する。
RAF-DB, AffectNet, FERPlus の実験により, 本手法は既存の半教師付きFER法より優れ, 新たな最先端性能を実現することを示す。
注目すべきは、25%のトレーニングセットでAffectNetで64.02%、RAF-DBで88.23%を達成したことだ。
コードはhttps://github.com/zhelishisongjie/SSFER.comで公開される。
関連論文リスト
- E2F-Net: Eyes-to-Face Inpainting via StyleGAN Latent Space [4.110419543591102]
我々は、E2F-Net(Eyes-to-Face Network)と呼ばれるGANベースのモデルを提案する。
提案手法は,2つの専用エンコーダを用いて眼周囲領域から同一性および非同一性の特徴を抽出する。
提案手法は,現在の手法を超越して,高品質な顔全体の再構築に成功していることを示す。
論文 参考訳(メタデータ) (2024-03-18T19:11:34Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Blind Face Restoration: Benchmark Datasets and a Baseline Model [63.053331687284064]
Blind Face Restoration (BFR) は、対応する低品質 (LQ) 入力から高品質 (HQ) の顔画像を構築することを目的としている。
EDFace-Celeb-1M (BFR128) と EDFace-Celeb-150K (BFR512) と呼ばれる2つのブラインドフェイス復元ベンチマークデータセットを最初に合成する。
最先端の手法は、ブラー、ノイズ、低解像度、JPEG圧縮アーティファクト、それらの組み合わせ(完全な劣化)の5つの設定でベンチマークされる。
論文 参考訳(メタデータ) (2022-06-08T06:34:24Z) - Self-supervised Contrastive Learning of Multi-view Facial Expressions [9.949781365631557]
顔表情認識(FER)は,人間とコンピュータのインタラクションシステムにおいて重要な構成要素である。
本稿では,多視点表情のコントラスト学習(CL-MEx)を提案する。
論文 参考訳(メタデータ) (2021-08-15T11:23:34Z) - Robust Facial Expression Recognition with Convolutional Visual
Transformers [23.05378099875569]
コンボリューションビジュアルトランスフォーマーは、主に2つのステップで野生の表情認識に取り組むために提案します。
まず,2分岐CNNが生成する特徴マップを活用するための注意選択融合(ASF)を提案する。
第二に,自然言語処理におけるトランスフォーマーの成功に触発されて,これらの視覚単語間の関係をグローバル自己着眼でモデル化することを提案する。
論文 参考訳(メタデータ) (2021-03-31T07:07:56Z) - Boosting Unconstrained Face Recognition with Auxiliary Unlabeled Data [59.85605718477639]
本稿では,ラベルのない顔を用いて一般化可能な顔表現を学習する手法を提案する。
制約のないデータセットに対する実験結果から、十分な多様性を持つ少量のラベル付きデータが認識性能を向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2020-03-17T20:58:56Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
本稿では,3次元モデルを用いたドメイン転送型顔強調ネットワーク(DotFAN)を提案する。
DotFANは、他のドメインから収集された既存のリッチフェイスデータセットから抽出された知識に基づいて、入力顔の一連の変種を生成することができる。
実験によると、DotFANは、クラス内の多様性を改善するために、小さな顔データセットを増やすのに有益である。
論文 参考訳(メタデータ) (2020-02-23T08:16:34Z) - Deep Multi-Facial Patches Aggregation Network For Facial Expression
Recognition [5.735035463793008]
深層多面的パッチアグリゲーションネットワークに基づく顔表情認識(FER)のアプローチを提案する。
ディープ機能は、ディープサブネットワークを使用して顔のパッチから学習され、表現分類のために1つのディープアーキテクチャに集約される。
論文 参考訳(メタデータ) (2020-02-20T17:57:06Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。