論文の概要: Longitudinal Causal Image Synthesis
- arxiv url: http://arxiv.org/abs/2410.17691v1
- Date: Wed, 23 Oct 2024 09:13:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:35.525815
- Title: Longitudinal Causal Image Synthesis
- Title(参考訳): 縦型因果画像合成
- Authors: Yujia Li, Han Li, ans S. Kevin Zhou,
- Abstract要約: 臨床的意思決定は因果推論と縦断解析に大きく依存する。
脳脊髄液中のA-βレベルに介在した場合、脳灰白質萎縮は1年でどのように起こるか?
- 参考スコア(独自算出の注目度): 19.07839779249869
- License:
- Abstract: Clinical decision-making relies heavily on causal reasoning and longitudinal analysis. For example, for a patient with Alzheimer's disease (AD), how will the brain grey matter atrophy in a year if intervened on the A-beta level in cerebrospinal fluid? The answer is fundamental to diagnosis and follow-up treatment. However, this kind of inquiry involves counterfactual medical images which can not be acquired by instrumental or correlation-based image synthesis models. Yet, such queries require counterfactual medical images, not obtainable through standard image synthesis models. Hence, a causal longitudinal image synthesis (CLIS) method, enabling the synthesis of such images, is highly valuable. However, building a CLIS model confronts three primary yet unmet challenges: mismatched dimensionality between high-dimensional images and low-dimensional tabular variables, inconsistent collection intervals of follow-up data, and inadequate causal modeling capability of existing causal graph methods for image data. In this paper, we established a tabular-visual causal graph (TVCG) for CLIS overcoming these challenges through a novel integration of generative imaging, continuous-time modeling, and structural causal models combined with a neural network. We train our CLIS based on the ADNI dataset and evaluate it on two other AD datasets, which illustrate the outstanding yet controllable quality of the synthesized images and the contributions of synthesized MRI to the characterization of AD progression, substantiating the reliability and utility in clinics.
- Abstract(参考訳): 臨床的意思決定は因果推論と縦断解析に大きく依存する。
例えば、アルツハイマー病(AD)の患者では、脳脊髄液のA-βレベルに介在した場合、脳灰白質萎縮は1年でどのように起こるか。
その答えは診断と追跡治療の基本である。
しかし、このような調査には、楽器や相関に基づく画像合成モデルでは取得できない偽の医療画像が含まれる。
しかし、そのようなクエリは、標準的な画像合成モデルでは得られない、反現実的な医療画像を必要とする。
したがって、このような画像の合成を可能にする因果長手画像合成法(CLIS)は非常に貴重である。
しかし,CLISモデルの構築には,高次元画像と低次元表変数間の不整合次元,フォローアップデータの不整合収集間隔,既存の因果グラフ手法の因果モデリング能力の欠如,3つの課題がある。
本稿では,CLIS のための表型視覚因果グラフ (TVCG) を構築し,生成画像,連続時間モデリング,構造因果モデルとニューラルネットワークを組み合わせることで,これらの課題を克服した。
我々は、ADNIデータセットに基づいてCLISをトレーニングし、他の2つのADデータセットに基づいて評価する。これは、合成画像の際立った、制御可能な品質と、AD進行の特徴づけへの合成MRIの貢献、クリニックにおける信頼性と有用性を実証するものである。
関連論文リスト
- Synthesizing CTA Image Data for Type-B Aortic Dissection using Stable
Diffusion Models [0.993378200812519]
安定拡散(SD)は、ジェネレーティブAIの分野で近年注目を集めている。
心電図CTA画像は, テキスト・トゥ・イメージ(T2I)の安定拡散モデルを用いて, 正常に生成できることが示されている。
論文 参考訳(メタデータ) (2024-02-10T14:59:37Z) - A 3D generative model of pathological multi-modal MR images and
segmentations [3.4806591877889375]
脳MRIと関連セグメンテーションのための3次元生成モデルである脳SPADE3Dを提案する。
提案した共同画像分割生成モデルを用いて,高忠実度合成画像と関連するセグメンテーションを生成する。
データに予期せぬ病理が存在する場合、セグメント化モデルの性能に関する問題をモデルが緩和する方法を実証する。
論文 参考訳(メタデータ) (2023-11-08T09:36:37Z) - An Attentive-based Generative Model for Medical Image Synthesis [18.94900480135376]
注意に基づく二重コントラスト生成モデルであるADC-cycleGANを提案する。
このモデルは、二重コントラスト損失項とCycleGAN損失を統合し、合成された画像がソース領域と区別可能であることを保証する。
実験により,提案したADCサイクルGANモデルが,他の最先端生成モデルに匹敵するサンプルを生成することが示された。
論文 参考訳(メタデータ) (2023-06-02T14:17:37Z) - Causal Image Synthesis of Brain MR in 3D [26.102886239053728]
本稿では,アルツハイマー病の統計変数,臨床指標,脳MR画像の因果関係をモデル化する新しい手法を提案する。
具体的には,構造因果モデルを用いて因果関係を表現し,画像の合成を行う。
提案手法を被験者1586名と3D画像3683名に基づいて実験し,脳MRI画像の合成を行った。
論文 参考訳(メタデータ) (2023-03-25T03:56:32Z) - Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs [0.5039813366558306]
本稿では,教師付きディープラーニング(DL)トレーニングの適用のためのラベル付きデータを生成する手法を提案する。
画像合成はラベル変形とラベルから画像への変換からなる。
心臓MRI画像のデータベースを多様化・拡張する手法として,このようなアプローチが有効であることを示す。
論文 参考訳(メタデータ) (2022-09-09T10:17:49Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
マルチモダリティイメージングは、疾患の診断を改善し、解剖学的特性を持つ組織における相違を明らかにする。
完全な整列とペアの多モードニューロイメージングデータの存在は、脳研究においてその効果を証明している。
もう一つの解決策は、教師なしまたは弱教師なしの学習方法を探究し、欠落した神経画像データを合成することである。
論文 参考訳(メタデータ) (2022-02-14T19:29:08Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
発展途上国の一般的なシナリオは、複数の理由からボリュームメタデータが失われることである。
ヒトの診断過程を模倣したマルチイメージから単一診断モデルを得ることが可能である。
論文 参考訳(メタデータ) (2020-10-20T04:30:09Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
胸部X線画像上の疾患診断は,多ラベル分類の課題である。
本稿では,異なる疾患間の相互依存を調査する新たな視点を提示する病的診断グラフ畳み込みネットワーク(DD-GCN)を提案する。
本手法は,相関学習のための動的隣接行列を用いた特徴写像上のグラフを初めて構築する手法である。
論文 参考訳(メタデータ) (2020-02-26T17:10:48Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。