論文の概要: Learning Lossless Compression for High Bit-Depth Volumetric Medical Image
- arxiv url: http://arxiv.org/abs/2410.17814v1
- Date: Wed, 23 Oct 2024 12:18:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:30.894732
- Title: Learning Lossless Compression for High Bit-Depth Volumetric Medical Image
- Title(参考訳): 高ビット深度医用画像における無損失圧縮の学習
- Authors: Kai Wang, Yuanchao Bai, Daxin Li, Deming Zhai, Junjun Jiang, Xianming Liu,
- Abstract要約: 本稿では,高ビット深度医用ボリューム圧縮に適したBit-DivisionベースのLosless Volumetric Image Compressionフレームワークを提案する。
BD-LVICフレームワークは、高ビット深度を2つの下位ビット深度セグメント(MSBV)とLast Significant Bit-Volume(LSBV)に巧みに分割する。
- 参考スコア(独自算出の注目度): 61.740026014860256
- License:
- Abstract: Recent advances in learning-based methods have markedly enhanced the capabilities of image compression. However, these methods struggle with high bit-depth volumetric medical images, facing issues such as degraded performance, increased memory demand, and reduced processing speed. To address these challenges, this paper presents the Bit-Division based Lossless Volumetric Image Compression (BD-LVIC) framework, which is tailored for high bit-depth medical volume compression. The BD-LVIC framework skillfully divides the high bit-depth volume into two lower bit-depth segments: the Most Significant Bit-Volume (MSBV) and the Least Significant Bit-Volume (LSBV). The MSBV concentrates on the most significant bits of the volumetric medical image, capturing vital structural details in a compact manner. This reduction in complexity greatly improves compression efficiency using traditional codecs. Conversely, the LSBV deals with the least significant bits, which encapsulate intricate texture details. To compress this detailed information effectively, we introduce an effective learning-based compression model equipped with a Transformer-Based Feature Alignment Module, which exploits both intra-slice and inter-slice redundancies to accurately align features. Subsequently, a Parallel Autoregressive Coding Module merges these features to precisely estimate the probability distribution of the least significant bit-planes. Our extensive testing demonstrates that the BD-LVIC framework not only sets new performance benchmarks across various datasets but also maintains a competitive coding speed, highlighting its significant potential and practical utility in the realm of volumetric medical image compression.
- Abstract(参考訳): 近年の学習手法の進歩により,画像圧縮の能力が著しく向上している。
しかし、これらの手法は、性能低下、メモリ需要の増大、処理速度の低下といった問題に直面し、高ビット幅の医用画像に苦慮している。
これらの課題に対処するために,高ビット幅の医用ボリューム圧縮に適したBit-Division based Lossless Volumetric Image Compression (BD-LVIC) フレームワークを提案する。
BD-LVICフレームワークは、高ビット深度を2つの下位ビット深度セグメント(MSBV)とLast Significant Bit-Volume(LSBV)に巧みに分割する。
MSBVは、ボリューム医学画像の最も重要な部分に集中し、コンパクトな方法で重要な構造的詳細を捉えている。
この複雑さの低減は、従来のコーデックを用いた圧縮効率を大幅に向上させる。
逆にLSBVは、複雑なテクスチャの詳細をカプセル化する最小のビットを扱う。
この詳細情報を効果的に圧縮するために,Transformer-based Feature Alignment Module を備えた効果的な学習ベース圧縮モデルを導入する。
その後、並列自己回帰符号化モジュールはこれらの特徴をマージし、最小のビット平面の確率分布を正確に推定する。
我々の広範なテストにより、BD-LVICフレームワークは、様々なデータセットにまたがる新しいパフォーマンスベンチマークを設定できるだけでなく、競合するコーディング速度を維持しており、ボリューム医学画像圧縮の領域において、その大きな可能性と実用性を強調している。
関連論文リスト
- UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - Probing Image Compression For Class-Incremental Learning [8.711266563753846]
連続機械学習(ML)システムは、前もって学習したデータのパフォーマンスを維持するために、メモリ制限内に代表サンプル(例題としても知られる)を格納することに依存する。
本稿では,バッファの容量を増大させる戦略として画像圧縮を利用する方法を検討する。
本稿では,事前処理データ圧縮ステップと効率的な圧縮率/アルゴリズム選択方法を含む連続MLのための画像圧縮を組み込む新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-10T18:58:14Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
本稿では,マルチモーダル画像セマンティック圧縮法を提案する。
画像の意味情報を抽出するLMMエンコーダと、その意味に対応する領域を特定するマップエンコーダと、非常に圧縮されたビットストリームを生成する画像エンコーダと、前記情報に基づいて画像を再構成するデコーダとからなる。
知覚50%を節約しながら最適な一貫性と知覚結果を達成することができ、これは次世代のストレージと通信において強力な可能性を持つ。
論文 参考訳(メタデータ) (2024-02-26T17:11:11Z) - Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network [0.0]
本稿では,ハードウェアフレンドリーなストリーミングロスレスボリューム圧縮フレームワークを提案する。
本稿では,多種多様な畳み込み構造と融合ゲート機構を組み合わせたゲートリカレント畳み込みニューラルネットワークを提案する。
提案手法は,堅牢な一般化能力と競争圧縮速度を示す。
論文 参考訳(メタデータ) (2023-11-27T07:19:09Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
本稿ではベクトル量子化(VQ)に基づく生成モデルを画像圧縮領域に導入する。
VQGANモデルによって学習されたコードブックは、強い表現能力をもたらす。
提案したフレームワークは、知覚的品質指向のメトリクスで最先端のコーデックより優れている。
論文 参考訳(メタデータ) (2023-07-17T06:14:19Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
近年,学習画像圧縮(lic)法は大きな進歩を遂げている。
licメソッドは、画像圧縮に不可欠な画像構造とテクスチャコンポーネントを明示的に探索することができない。
原画像の構造とテクスチャに基づいて可視パッチをサンプリングするDA-Maskを提案する。
極めて低ビットレート圧縮のために, lic と lic のエンドツーエンドを統一する最初のフレームワークである, 単純で効果的なマスク付き圧縮モデル (MCM) を提案する。
論文 参考訳(メタデータ) (2023-06-27T15:36:22Z) - Device Interoperability for Learned Image Compression with Weights and
Activations Quantization [1.373801677008598]
本稿では,最先端の画像圧縮ネットワークのデバイス相互運用性問題を解決する手法を提案する。
本稿では,クロスプラットフォームの符号化と復号化を保証し,高速に実装できる簡易な手法を提案する。
論文 参考訳(メタデータ) (2022-12-02T17:45:29Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
ロスシー画像圧縮は、デジタル画像の最もよく使われる演算子の1つである。
Invertible Lossy Compression (ILC) と呼ばれる新しい非可逆的フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T04:04:56Z) - A GAN-based Tunable Image Compression System [13.76136694287327]
本稿では、GAN(Generative Adversarial Network)を用いてコンテンツベースの圧縮を再考し、重要でない領域を再構築する。
モデルを再トレーニングすることなく、特定の圧縮比に画像を圧縮するチューナブル圧縮スキームも提案する。
論文 参考訳(メタデータ) (2020-01-18T02:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。