Identifiable Representation and Model Learning for Latent Dynamic Systems
- URL: http://arxiv.org/abs/2410.17882v2
- Date: Wed, 04 Dec 2024 13:14:15 GMT
- Title: Identifiable Representation and Model Learning for Latent Dynamic Systems
- Authors: Congxi Zhang, Yongchun Xie,
- Abstract summary: We study the problem of identifiable representation and model learning for latent dynamic systems.
We prove that, for linear and affine nonlinear latent dynamic systems with sparse input matrices, it is possible to identify the latent variables up to scaling.
- Score: 0.0
- License:
- Abstract: Learning identifiable representations and models from low-level observations is helpful for an intelligent spacecraft to complete downstream tasks reliably. For temporal observations, to ensure that the data generating process is provably inverted, most existing works either assume the noise variables in the dynamic mechanisms are (conditionally) independent or require that the interventions can directly affect each latent variable. However, in practice, the relationship between the exogenous inputs/interventions and the latent variables may follow some complex deterministic mechanisms. In this work, we study the problem of identifiable representation and model learning for latent dynamic systems. The key idea is to use an inductive bias inspired by controllable canonical forms, which are sparse and input-dependent by definition. We prove that, for linear and affine nonlinear latent dynamic systems with sparse input matrices, it is possible to identify the latent variables up to scaling and determine the dynamic models up to some simple transformations. The results have the potential to provide some theoretical guarantees for developing more trustworthy decision-making and control methods for intelligent spacecrafts.
Related papers
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - Tracking control of latent dynamic systems with application to spacecraft attitude control [0.0]
When intelligent spacecraft or space robots perform tasks in a complex environment, the controllable variables are usually not directly available.
While the dynamics of these observations are highly complex, the mechanisms behind them may be simple.
For control of latent dynamic systems, methods based on reinforcement learning suffer from sample inefficiency and generalization problems.
arXiv Detail & Related papers (2024-12-09T09:49:15Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals.
Existing methods for latent variable estimation are not robust to dynamical noise and system nonlinearity.
We propose a probabilistic approach to latent variable estimation in decomposed models that improves robustness against dynamical noise.
arXiv Detail & Related papers (2024-08-29T18:58:39Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
We present an approach to learn such motions from a limited number of human demonstrations.
The complex motions are encoded as rollouts of a stable dynamical system.
The efficacy of this approach is demonstrated through validation on an established benchmark as well demonstrations collected on a real-world robotic system.
arXiv Detail & Related papers (2020-05-27T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.