論文の概要: Spiking Graph Neural Network on Riemannian Manifolds
- arxiv url: http://arxiv.org/abs/2410.17941v1
- Date: Wed, 23 Oct 2024 15:09:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:16.244286
- Title: Spiking Graph Neural Network on Riemannian Manifolds
- Title(参考訳): リーマン多様体上のグラフニューラルネットワークのスパイキング
- Authors: Li Sun, Zhenhao Huang, Qiqi Wan, Hao Peng, Philip S. Yu,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフの学習において支配的なソリューションとなっている。
既存のスパイク GNN はユークリッド空間のグラフを考慮し、構造幾何学を無視している。
マニフォールド値スパイキングGNN(MSG)を提案する。
MSGは従来のGNNよりも優れた性能とエネルギー効率を実現している。
- 参考スコア(独自算出の注目度): 51.15400848660023
- License:
- Abstract: Graph neural networks (GNNs) have become the dominant solution for learning on graphs, the typical non-Euclidean structures. Conventional GNNs, constructed with the Artificial Neuron Network (ANN), have achieved impressive performance at the cost of high computation and energy consumption. In parallel, spiking GNNs with brain-like spiking neurons are drawing increasing research attention owing to the energy efficiency. So far, existing spiking GNNs consider graphs in Euclidean space, ignoring the structural geometry, and suffer from the high latency issue due to Back-Propagation-Through-Time (BPTT) with the surrogate gradient. In light of the aforementioned issues, we are devoted to exploring spiking GNN on Riemannian manifolds, and present a Manifold-valued Spiking GNN (MSG). In particular, we design a new spiking neuron on geodesically complete manifolds with the diffeomorphism, so that BPTT regarding the spikes is replaced by the proposed differentiation via manifold. Theoretically, we show that MSG approximates a solver of the manifold ordinary differential equation. Extensive experiments on common graphs show the proposed MSG achieves superior performance to previous spiking GNNs and energy efficiency to conventional GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、典型的な非ユークリッド構造であるグラフの学習において支配的なソリューションとなっている。
ANN(Artificial Neuron Network)で構築された従来のGNNは、高い計算とエネルギー消費を犠牲にして、優れた性能を実現している。
並行して、脳に似たスパイクニューロンを持つGNNは、エネルギー効率のために研究の注目を集めている。
これまでのところ、既存のスパイクGNNはユークリッド空間のグラフを考慮し、構造幾何学を無視し、代理勾配を持つバックプロパゲーション・スロータイム(BPTT)による高遅延問題に悩まされている。
上記の問題を考慮し、リーマン多様体上のスパイク GNN を探索し、マニフォールド値のスパイキング GNN (MSG) を提示する。
特に、微分同相写像を持つ測地的完備多様体上の新しいスパイキングニューロンを設計し、スパイクに関するBPTTを多様体による微分に置き換える。
理論的には、MSGは多様体常微分方程式の解を近似する。
共用グラフに関する大規模な実験により,提案したMSGは従来のスパイクGNNよりも優れた性能を示し,エネルギー効率も従来のGNNよりも向上した。
関連論文リスト
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - Dirac--Bianconi Graph Neural Networks -- Enabling Non-Diffusive Long-Range Graph Predictions [2.3639951900278744]
我々は最近ビアンコーニが提唱したトポロジカルディラック方程式に基づいて,ディラック-ビアンコーニGNN(DBGNN)を紹介する。
グラフラプラシアンに基づいて、DBGNNが従来のメッセージパッシングニューラルネットワーク(MPNN)と根本的に異なる方法でグラフの幾何学を探索することを実証する。
論文 参考訳(メタデータ) (2024-07-17T08:59:00Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
グラフニューラルネットワーク(GNN)は、グラフ畳み込みの連続的な応用により、隣接ノードからの情報を結合する。
ノードレベルとグラフレベルの両方のタスクにおけるGNNの一般化ギャップについて検討する。
トレーニンググラフのノード数によって一般化ギャップが減少することを示す。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - Graph Neural Networks Do Not Always Oversmooth [46.57665708260211]
グラフ畳み込みネットワーク (GCN) における過剰スムーシングを, 無限に多くの隠れた特徴の極限におけるガウス過程 (GP) の等価性を用いて検討する。
ネットワークの初期重みが十分に大きな場合、GCNは過度に過度に動き、ノード特徴は大きな深さでも情報的であり続ける。
論文 参考訳(メタデータ) (2024-06-04T12:47:13Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
連続グラフニューラルネットワーク(CGNN)は、既存の離散グラフニューラルネットワーク(GNN)を一般化する能力によって注目されている。
本稿では,2階ODEを用いたCOS-GNNの高次構造について紹介する。
我々は、COS-GNNが爆発や消滅の問題を効果的に軽減し、ノード間の長距離依存関係を捕捉できるという理論的証明を提供する。
論文 参考訳(メタデータ) (2024-04-02T12:36:40Z) - Over-Squashing in Riemannian Graph Neural Networks [1.6317061277457001]
ほとんどのグラフニューラルネットワーク(GNN)は、オーバースカッシング(over-squashing)という現象を起こしやすい。
最近の研究では、グラフのトポロジがオーバー・スカッシングに最も大きな影響を与えることが示されている。
我々は, GNN の埋め込み空間を通じて, オーバースカッシングを緩和できるかどうかを考察する。
論文 参考訳(メタデータ) (2023-11-27T15:51:07Z) - Bregman Graph Neural Network [27.64062763929748]
ノード分類タスクでは、GNNによって誘導される滑らか化効果は、連結ノードの表現と過剰な均質化ラベルを同化する傾向がある。
本稿では,Bregman 距離の概念に触発された GNN のための新しい二段階最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-12T23:54:24Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。