論文の概要: Training Free Guided Flow Matching with Optimal Control
- arxiv url: http://arxiv.org/abs/2410.18070v1
- Date: Wed, 23 Oct 2024 17:53:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:49.234601
- Title: Training Free Guided Flow Matching with Optimal Control
- Title(参考訳): 最適制御によるフリーガイドフローマッチングの訓練
- Authors: Luran Wang, Chaoran Cheng, Yizhen Liao, Yanru Qu, Ge Liu,
- Abstract要約: 最適制御を用いたガイドフローマッチングのための学習自由フレームワークであるOC-Flowを提案する。
OC-Flowは,テキスト誘導画像操作,条件分子生成,全原子ペプチド設計において優れた性能を示した。
- 参考スコア(独自算出の注目度): 6.729886762762167
- License:
- Abstract: Controlled generation with pre-trained Diffusion and Flow Matching models has vast applications. One strategy for guiding ODE-based generative models is through optimizing a target loss $R(x_1)$ while staying close to the prior distribution. Along this line, some recent work showed the effectiveness of guiding flow model by differentiating through its ODE sampling process. Despite the superior performance, the theoretical understanding of this line of methods is still preliminary, leaving space for algorithm improvement. Moreover, existing methods predominately focus on Euclidean data manifold, and there is a compelling need for guided flow methods on complex geometries such as SO(3), which prevails in high-stake scientific applications like protein design. We present OC-Flow, a general and theoretically grounded training-free framework for guided flow matching using optimal control. Building upon advances in optimal control theory, we develop effective and practical algorithms for solving optimal control in guided ODE-based generation and provide a systematic theoretical analysis of the convergence guarantee in both Euclidean and SO(3). We show that existing backprop-through-ODE methods can be interpreted as special cases of Euclidean OC-Flow. OC-Flow achieved superior performance in extensive experiments on text-guided image manipulation, conditional molecule generation, and all-atom peptide design.
- Abstract(参考訳): 事前学習した拡散およびフローマッチングモデルによる制御された生成は、膨大な応用がある。
ODEベースの生成モデルを導く1つの戦略は、目標損失をR(x_1)$に最適化し、前の分布に近づき続けることである。
この線に沿って、最近のいくつかの研究は、そのODEサンプリング過程を微分することでフローモデルを導出する効果を示した。
優れた性能にもかかわらず、この手法の理論的理解はまだ予備的であり、アルゴリズムの改善の余地を残している。
さらに、既存の手法はユークリッドデータ多様体に重点を置いており、タンパク質設計のような高度な科学的応用に広く応用されるSO(3)のような複雑な幾何学上のガイドドフロー手法は魅力的な必要性がある。
最適制御を用いたガイドフローマッチングのための汎用的かつ理論的基礎のない学習自由フレームワークであるOC-Flowを提案する。
最適制御理論の進歩に基づいて、誘導ODE生成における最適制御を解くための効果的かつ実用的なアルゴリズムを開発し、ユークリッドとSO(3)の双方における収束保証の体系的理論的解析を行う。
既存のbackprop-through-ODEメソッドは、ユークリッドOC-Flowの特殊なケースと解釈できることを示す。
OC-Flowは、テキスト誘導画像操作、条件分子生成、全原子ペプチド設計に関する広範な実験において優れた性能を発揮した。
関連論文リスト
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
このチュートリアルは、下流の報酬関数を最適化するための微調整拡散モデルのための方法を網羅的に調査する。
PPO,微分可能最適化,報酬重み付きMLE,値重み付きサンプリング,経路整合性学習など,様々なRLアルゴリズムの適用について説明する。
論文 参考訳(メタデータ) (2024-07-18T17:35:32Z) - Gradient Guidance for Diffusion Models: An Optimization Perspective [45.6080199096424]
本稿では,ユーザ特定目的の最適化に向けて,事前学習した拡散モデルを適用するための勾配ガイダンスの形式について検討する。
我々は,その最適化理論とアルゴリズム設計を体系的に研究するために,誘導拡散の数学的枠組みを確立する。
論文 参考訳(メタデータ) (2024-04-23T04:51:02Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
本稿では,RLHFによる強化学習を用いた生成モデルのアライメント過程について検討する。
まず、オフラインPPOやオフラインDPOのような既存の一般的な手法の主な課題を、環境の戦略的探索に欠如していると認識する。
有限サンプル理論保証を用いた効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-18T18:58:42Z) - Application of deep and reinforcement learning to boundary control
problems [0.6906005491572401]
目的は、囲まれたドメインが所望の状態値に達するように、ドメイン境界に対する最適な値を見つけることである。
本研究は,ディープラーニングと強化学習による境界制御問題の解決の可能性を探る。
論文 参考訳(メタデータ) (2023-10-21T10:56:32Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - Comparative analysis of machine learning methods for active flow control [60.53767050487434]
遺伝的プログラミング(GP)と強化学習(RL)はフロー制御において人気を集めている。
この研究は2つの比較分析を行い、地球規模の最適化手法に対して最も代表的なアルゴリズムのいくつかをベンチマークする。
論文 参考訳(メタデータ) (2022-02-23T18:11:19Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
本研究は,流体力学系の最適化と制御を支援するための深部強化学習(DRL)技術の能力を評価する。
原型ポリシー最適化(PPO)アルゴリズムの新たな"退化"バージョンを組み合わせることで、学習エピソード当たり1回だけシステムを最適化するニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-06-04T16:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。