$M^3EL$: A Multi-task Multi-topic Dataset for Multi-modal Entity Linking
- URL: http://arxiv.org/abs/2410.18096v1
- Date: Tue, 08 Oct 2024 10:52:23 GMT
- Title: $M^3EL$: A Multi-task Multi-topic Dataset for Multi-modal Entity Linking
- Authors: Fang Wang, Shenglin Yin, Xiaoying Bai, Minghao Hu, Tianwei Yan, Yi Liang,
- Abstract summary: We propose a dataset construction pipeline and publish $M3EL$, a large-scale dataset for MEL.
$M3EL$ includes 79,625 instances, covering 9 diverse multi-modal tasks, and 5 different topics.
Our dataset effectively addresses these issues, and the $textitCLIP_textitND$ model fine-tuned with $M3EL$ shows a significant improvement in accuracy.
- Score: 11.334577756093923
- License:
- Abstract: Multi-modal Entity Linking (MEL) is a fundamental component for various downstream tasks. However, existing MEL datasets suffer from small scale, scarcity of topic types and limited coverage of tasks, making them incapable of effectively enhancing the entity linking capabilities of multi-modal models. To address these obstacles, we propose a dataset construction pipeline and publish $M^3EL$, a large-scale dataset for MEL. $M^3EL$ includes 79,625 instances, covering 9 diverse multi-modal tasks, and 5 different topics. In addition, to further improve the model's adaptability to multi-modal tasks, We propose a modality-augmented training strategy. Utilizing $M^3EL$ as a corpus, train the $\textit{CLIP}_{\textit{ND}}$ model based on $\textit{CLIP} (\textit{ViT}-\textit{B}-\textit{32})$, and conduct a comparative analysis with an existing multi-modal baselines. Experimental results show that the existing models perform far below expectations (ACC of 49.4%-75.8%), After analysis, it was obtained that small dataset sizes, insufficient modality task coverage, and limited topic diversity resulted in poor generalisation of multi-modal models. Our dataset effectively addresses these issues, and the $\textit{CLIP}_{\textit{ND}}$ model fine-tuned with $M^3EL$ shows a significant improvement in accuracy, with an average improvement of 9.3% to 25% across various tasks. Our dataset is available at https://anonymous.4open.science/r/M3EL.
Related papers
- MINIMA: Modality Invariant Image Matching [52.505282811925454]
We present MINIMA, a unified image matching framework for multiple cross-modal cases.
We scale up the modalities from cheap but rich RGB-only matching data, by means of generative models.
With MD-syn, we can directly train any advanced matching pipeline on randomly selected modality pairs to obtain cross-modal ability.
arXiv Detail & Related papers (2024-12-27T02:39:50Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.
Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.
We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - M$^{3}$D: A Multimodal, Multilingual and Multitask Dataset for Grounded Document-level Information Extraction [36.506500653677364]
We construct a multimodal multilingual multitask dataset, named M$3$D.
It contains paired document-level text and video to enrich multimodal information.
It supports two widely-used languages, namely English and Chinese.
arXiv Detail & Related papers (2024-12-05T10:00:58Z) - Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines [64.61315565501681]
Multi-modal Retrieval Augmented Multi-modal Generation (M$2$RAG) is a novel task that enables foundation models to process multi-modal web content.
Despite its potential impact, M$2$RAG remains understudied, lacking comprehensive analysis and high-quality data resources.
arXiv Detail & Related papers (2024-11-25T13:20:19Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Toward Robust Multimodal Learning using Multimodal Foundational Models [30.755818450393637]
We propose TRML, Toward Robust Multimodal Learning using Multimodal Foundational Models.
TRML employs generated virtual modalities to replace missing modalities.
We also design a semantic matching learning module to align semantic spaces generated and missing modalities.
arXiv Detail & Related papers (2024-01-20T04:46:43Z) - Lightweight In-Context Tuning for Multimodal Unified Models [57.10831399642176]
MultiModal In-conteXt Tuning (M$2$IXT) is a lightweight module to enhance the ICL capabilities of multimodal unified models.
When tuned on as little as 50K multimodal data, M$2$IXT can boost the few-shot ICL performance significantly.
arXiv Detail & Related papers (2023-10-08T10:47:24Z) - Dissecting Multimodality in VideoQA Transformer Models by Impairing Modality Fusion [54.33764537135906]
VideoQA Transformer models demonstrate competitive performance on standard benchmarks.
Do these models capture the rich multimodal structures and dynamics from video and text jointly?
Are they achieving high scores by exploiting biases and spurious features?
arXiv Detail & Related papers (2023-06-15T06:45:46Z) - Graph Neural Networks for Multimodal Single-Cell Data Integration [32.8390339109358]
We present a general Graph Neural Network framework $textitscMoGNN$ to tackle three tasks.
textitscMoGNN$ demonstrates superior results in all three tasks compared with the state-of-the-art and conventional approaches.
arXiv Detail & Related papers (2022-03-03T17:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.