Automated Defect Detection and Grading of Piarom Dates Using Deep Learning
- URL: http://arxiv.org/abs/2410.18208v1
- Date: Wed, 23 Oct 2024 18:25:20 GMT
- Title: Automated Defect Detection and Grading of Piarom Dates Using Deep Learning
- Authors: Nasrin Azimi, Danial Mohammad Rezaei,
- Abstract summary: We propose an innovative deep learning framework designed specifically for the real-time detection, classification, and grading of Piarom dates.
Our framework integrates state-of-the-art object detection algorithms and Convolutional Neural Networks (CNNs) to achieve high precision in defect identification.
Experimental results demonstrate that our system significantly outperforms existing methods in terms of accuracy and computational efficiency.
- Score: 0.0
- License:
- Abstract: Grading and quality control of Piarom dates, a premium and high-value variety cultivated predominantly in Iran, present significant challenges due to the complexity and variability of defects, as well as the absence of specialized automated systems tailored to this fruit. Traditional manual inspection methods are labor intensive, time consuming, and prone to human error, while existing AI-based sorting solutions are insufficient for addressing the nuanced characteristics of Piarom dates. In this study, we propose an innovative deep learning framework designed specifically for the real-time detection, classification, and grading of Piarom dates. Leveraging a custom dataset comprising over 9,900 high-resolution images annotated across 11 distinct defect categories, our framework integrates state-of-the-art object detection algorithms and Convolutional Neural Networks (CNNs) to achieve high precision in defect identification. Furthermore, we employ advanced segmentation techniques to estimate the area and weight of each date, thereby optimizing the grading process according to industry standards. Experimental results demonstrate that our system significantly outperforms existing methods in terms of accuracy and computational efficiency, making it highly suitable for industrial applications requiring real-time processing. This work not only provides a robust and scalable solution for automating quality control in the Piarom date industry but also contributes to the broader field of AI-driven food inspection technologies, with potential applications across various agricultural products.
Related papers
- Self-Supervised Time-Series Anomaly Detection Using Learnable Data Augmentation [37.72735288760648]
We propose a learnable data augmentation-based time-series anomaly detection (LATAD) technique that is trained in a self-supervised manner.
LATAD extracts discriminative features from time-series data through contrastive learning.
As per the results, LATAD exhibited comparable or improved performance to the state-of-the-art anomaly detection assessments.
arXiv Detail & Related papers (2024-06-18T04:25:56Z) - Weakly Supervised Anomaly Detection via Knowledge-Data Alignment [24.125871437370357]
Anomaly detection plays a pivotal role in numerous web-based applications, including malware detection, anti-money laundering, device failure detection, and network fault analysis.
Weakly Supervised Anomaly Detection (WSAD) has been introduced with a limited number of labeled anomaly samples to enhance model performance.
We introduce a novel framework Knowledge-Data Alignment (KDAlign) to integrate rule knowledge, typically summarized by human experts, to supplement the limited labeled data.
arXiv Detail & Related papers (2024-02-06T07:57:13Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - Human readable network troubleshooting based on anomaly detection and
feature scoring [11.593495085674343]
We present a system based on (i) unsupervised learning methods for detecting anomalies in the time domain, (ii) an attention mechanism to rank features in the feature space and (iii) an expert knowledge module.
We thoroughly evaluate the performance of the full system and of its individual building blocks.
arXiv Detail & Related papers (2021-08-26T14:20:36Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.