Towards transparent and data-driven fault detection in manufacturing: A case study on univariate, discrete time series
- URL: http://arxiv.org/abs/2507.00102v1
- Date: Mon, 30 Jun 2025 14:11:48 GMT
- Title: Towards transparent and data-driven fault detection in manufacturing: A case study on univariate, discrete time series
- Authors: Bernd Hofmann, Patrick Bruendl, Huong Giang Nguyen, Joerg Franke,
- Abstract summary: This paper introduces a methodology for industrial fault detection, which is both data-driven and transparent.<n>The approach integrates a supervised machine learning model for multi-class fault classification, Shapley Additive Explanations for post-hoc interpretability, and a do-main-specific visualisation technique.<n>The system achieves a fault detection accuracy of 95.9 %, and both quantitative selectivity analysis and qualitative expert evaluations confirmed the relevance and inter-pretability of the generated explanations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring consistent product quality in modern manufacturing is crucial, particularly in safety-critical applications. Conventional quality control approaches, reliant on manually defined thresholds and features, lack adaptability to the complexity and variability inherent in production data and necessitate extensive domain expertise. Conversely, data-driven methods, such as machine learning, demonstrate high detection performance but typically function as black-box models, thereby limiting their acceptance in industrial environments where interpretability is paramount. This paper introduces a methodology for industrial fault detection, which is both data-driven and transparent. The approach integrates a supervised machine learning model for multi-class fault classification, Shapley Additive Explanations for post-hoc interpretability, and a do-main-specific visualisation technique that maps model explanations to operator-interpretable features. Furthermore, the study proposes an evaluation methodology that assesses model explanations through quantitative perturbation analysis and evaluates visualisations by qualitative expert assessment. The approach was applied to the crimping process, a safety-critical joining technique, using a dataset of univariate, discrete time series. The system achieves a fault detection accuracy of 95.9 %, and both quantitative selectivity analysis and qualitative expert evaluations confirmed the relevance and inter-pretability of the generated explanations. This human-centric approach is designed to enhance trust and interpretability in data-driven fault detection, thereby contributing to applied system design in industrial quality control.
Related papers
- Mitigating Attrition: Data-Driven Approach Using Machine Learning and Data Engineering [0.0]
This paper presents a novel data-driven approach to mitigating employee attrition using machine learning and data engineering techniques.<n>The proposed framework integrates data from various human resources systems and leverages advanced feature engineering to capture a comprehensive set of factors influencing attrition.
arXiv Detail & Related papers (2025-02-25T05:29:45Z) - Counterfactual Explanation for Auto-Encoder Based Time-Series Anomaly Detection [0.3199881502576702]
Auto-Encoders exhibit inherent opaqueness in their decision-making processes, hindering their practical implementation at scale.<n>In this work, we employ a feature selector to select features and counterfactual explanations to give a context to the model output.<n>Our experimental findings illustrate that our proposed counterfactual approach can offer meaningful and valuable insights into the model decision-making process.
arXiv Detail & Related papers (2025-01-03T19:30:11Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Data AUDIT: Identifying Attribute Utility- and Detectability-Induced
Bias in Task Models [8.420252576694583]
We present a first technique for the rigorous, quantitative screening of medical image datasets.
Our method decomposes the risks associated with dataset attributes in terms of their detectability and utility.
Using our method, we show our screening method reliably identifies nearly imperceptible bias-inducing artifacts.
arXiv Detail & Related papers (2023-04-06T16:50:15Z) - An Ontology for Defect Detection in Metal Additive Manufacturing [3.997680012976965]
Key for Industry 4.0 applications is to develop control systems capable of addressing data integration and semantic interoperability issues.
We provide the classification of process-induced defects known from the metal additive manufacturing literature.
Our knowledge base aims at enhancing the capabilities of additive manufacturing by adding further defect analysis terminology.
arXiv Detail & Related papers (2022-09-29T13:35:25Z) - Zero-sample surface defect detection and classification based on
semantic feedback neural network [13.796631421521765]
We propose an Ensemble Co-training algorithm, which adaptively reduces the prediction error in image tag embedding from multiple angles.
Various experiments conducted on the zero-shot dataset and the cylinder liner dataset in the industrial field provide competitive results.
arXiv Detail & Related papers (2021-06-15T08:26:36Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.