論文の概要: Dear Diary: A randomized controlled trial of Generative AI coding tools in the workplace
- arxiv url: http://arxiv.org/abs/2410.18334v1
- Date: Thu, 24 Oct 2024 00:07:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:01.723767
- Title: Dear Diary: A randomized controlled trial of Generative AI coding tools in the workplace
- Title(参考訳): Dear Diary: 職場で生成AIコーディングツールをランダムに制御した試行
- Authors: Jenna Butler, Jina Suh, Sankeerti Haniyur, Constance Hadley,
- Abstract要約: ジェネレーティブAIコーディングツールは比較的新しいもので、開発者への影響は従来のコーディングメトリクスを超えて拡大している。
本研究の目的は、生成型AIツールに関する既存の信念、自己認識、そしてこれらのツールの定期的な使用がこれらの信念をどう変えるかを明らかにすることである。
その結果,ジェネレーティブなAIコーディングツールの導入と持続的使用は,これらのツールが有用かつ楽しいものであるという開発者の認識を著しく高めていることが明らかとなった。
- 参考スコア(独自算出の注目度): 2.5280615594444567
- License:
- Abstract: Generative AI coding tools are relatively new, and their impact on developers extends beyond traditional coding metrics, influencing beliefs about work and developers' roles in the workplace. This study aims to illuminate developers' preexisting beliefs about generative AI tools, their self perceptions, and how regular use of these tools may alter these beliefs. Using a mixed methods approach, including surveys, a randomized controlled trial, and a three week diary study, we explored the real world application of generative AI tools within a large multinational software company. Our findings reveal that the introduction and sustained use of generative AI coding tools significantly increases developers' perceptions of these tools as both useful and enjoyable. However, developers' views on the trustworthiness of AI generated code remained unchanged. We also discovered unexpected uses of these tools, such as replacing web searches and fostering creative ideation. Additionally, 84 percent of participants reported positive changes in their daily work practices, and 66 percent noted shifts in their feelings about their work, ranging from increased enthusiasm to heightened awareness of the need to stay current with technological advances. This research provides both qualitative and quantitative insights into the evolving role of generative AI in software development and offers practical recommendations for maximizing the benefits of this emerging technology, particularly in balancing the productivity gains from AI-generated code with the need for increased scrutiny and critical evaluation of its outputs.
- Abstract(参考訳): ジェネレーティブなAIコーディングツールは比較的新しいツールであり、その開発者への影響は従来のコーディングメトリクスを超えて、職場における仕事や開発者の役割に対する信念に影響を与える。
本研究の目的は、生成型AIツールに関する既存の信念、自己認識、そしてこれらのツールの定期的な使用がこれらの信念をどう変えるかを明らかにすることである。
調査,ランダム化比較試験,および3週間の日記研究を含む混合手法を用いて,大規模多国籍ソフトウェア企業における生成AIツールの現実的応用について検討した。
その結果,ジェネレーティブなAIコーディングツールの導入と持続的使用は,これらのツールが有用かつ楽しいものであるという開発者の認識を著しく高めていることが明らかとなった。
しかし、AIの信頼性に関する開発者の見解は変わっていない。
また、ウェブ検索の代替やクリエイティブなアイデアの育成など、これらのツールの予期せぬ利用も発見しました。
さらに、参加者の84%は日々の作業習慣に肯定的な変化を報告し、66%は仕事に対する感情の変化を報告した。
この研究は、ソフトウェア開発における生成AIの役割の進化に関する質的および定量的な洞察を提供するとともに、この新興技術の利点を最大化するための実践的な勧告を提供する。
関連論文リスト
- "I Don't Use AI for Everything": Exploring Utility, Attitude, and Responsibility of AI-empowered Tools in Software Development [19.851794567529286]
本研究では、ソフトウェア開発プロセスにおけるAIを活用したツールの採用、影響、およびセキュリティに関する考察を行う。
ソフトウェア開発のさまざまな段階において,AIツールが広く採用されていることが判明した。
論文 参考訳(メタデータ) (2024-09-20T09:17:10Z) - The Impact of Generative AI-Powered Code Generation Tools on Software Engineer Hiring: Recruiters' Experiences, Perceptions, and Strategies [4.557635080377692]
本研究では,GenAIを利用したコード生成ツールについて,採用者の経験と認識について考察する。
業界の専門家32人を対象に行った調査では、ほとんどの参加者はそのようなツールに精通しているが、ほとんどの組織は、これらのツールの使用・知識を考慮に入れた候補評価手法を調整していない。
ほとんどの参加者は、GenAIを利用したコード生成ツールをコンピュータサイエンスカリキュラムに組み込むことが重要であると考えている。
論文 参考訳(メタデータ) (2024-09-02T00:00:29Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - The Role of Generative AI in Software Development Productivity: A Pilot Case Study [0.0]
本稿では,ソフトウェア開発における生成AIツールの統合について検討する。
パイロットケーススタディを通じて、生成可能なAIツールを日々の作業ルーチンに統合する上で、貴重な経験を集めました。
以上の結果から,これらのツールの個人の生産性に対する肯定的な認識と,特定された制限に対処する必要性が示唆された。
論文 参考訳(メタデータ) (2024-06-01T21:51:33Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - LLM-based Interaction for Content Generation: A Case Study on the
Perception of Employees in an IT department [85.1523466539595]
本稿では,IT企業の従業員が生成ツールを使用する意図を明らかにするためのアンケート調査を行う。
以上の結果から, 生成ツールの比較的平均的な受容性が示唆されるが, ツールが有用であると認識されるほど, 意図が高くなることが示唆された。
分析の結果, 生産ツールの利用頻度は, 従業員が作業の文脈でこれらのツールをどのように認識しているかを理解する上で重要な要因である可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-18T15:35:43Z) - A Large-Scale Survey on the Usability of AI Programming Assistants:
Successes and Challenges [23.467373994306524]
実際には、開発者はAIプログラミングアシスタントの最初の提案を高い頻度で受け入れない。
これらのツールを使用して開発者のプラクティスを理解するため、多数の開発者を対象に調査を実施しました。
開発者がAIプログラミングアシスタントを使用する動機は、開発者がキーストロークを減らしたり、プログラミングタスクを素早く終了したり、構文をリコールするのに役立つためである。
また、開発者がこれらのツールを使用しない最も重要な理由は、これらのツールが特定の機能的あるいは非機能的要件に対処するコードを出力していないためです。
論文 参考訳(メタデータ) (2023-03-30T03:21:53Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - AI Explainability 360: Impact and Design [120.95633114160688]
2019年、私たちはAI Explainability 360(Arya et al. 2020)を開発しました。
本稿では,いくつかのケーススタディ,統計,コミュニティフィードバックを用いて,ツールキットが与える影響について検討する。
また,ツールキットのフレキシブルな設計,使用例,利用者が利用可能な教育資料や資料についても述べる。
論文 参考訳(メタデータ) (2021-09-24T19:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。