論文の概要: A Causal Graph-Enhanced Gaussian Process Regression for Modeling Engine-out NOx
- arxiv url: http://arxiv.org/abs/2410.18424v1
- Date: Thu, 24 Oct 2024 04:23:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:49:20.741826
- Title: A Causal Graph-Enhanced Gaussian Process Regression for Modeling Engine-out NOx
- Title(参考訳): エンジンアウトNOxモデリングのための因果グラフ強化ガウスプロセス回帰
- Authors: Shrenik Zinage, Ilias Bilionis, Peter Meckl,
- Abstract要約: 本研究の目的は,ガウス過程回帰を用いたNOx排出予測モデルの開発と検証である。
入力ウィンドウを持つ標準ラジアル基底関数カーネルを持つ第1、時間的依存を捉えるために畳み込みニューラルネットワークを使用するディープカーネルを組み込んだ第2、グラフ畳み込みネットワークによって導出される因果グラフでディープカーネルを豊かにする第3の3つのガウスプロセスモデルを用いている。
実測値と定性値の両方を用いて,仮想ECMセンサと比較し,入力ウィンドウと深部カーネル構造を用いた場合の予測性能の向上が得られたと結論付けた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The stringent regulatory requirements on nitrogen oxides (NOx) emissions from diesel compression ignition engines require accurate and reliable models for real-time monitoring and diagnostics. Although traditional methods such as physical sensors and virtual engine control module (ECM) sensors provide essential data, they are only used for estimation. Ubiquitous literature primarily focuses on deterministic models with little emphasis on capturing the uncertainties due to sensors. The lack of probabilistic frameworks restricts the applicability of these models for robust diagnostics. The objective of this paper is to develop and validate a probabilistic model to predict engine-out NOx emissions using Gaussian process regression. Our approach is as follows. We employ three variants of Gaussian process models: the first with a standard radial basis function kernel with input window, the second incorporating a deep kernel using convolutional neural networks to capture temporal dependencies, and the third enriching the deep kernel with a causal graph derived via graph convolutional networks. The causal graph embeds physics knowledge into the learning process. All models are compared against a virtual ECM sensor using both quantitative and qualitative metrics. We conclude that our model provides an improvement in predictive performance when using an input window and a deep kernel structure. Even more compelling is the further enhancement achieved by the incorporation of a causal graph into the deep kernel. These findings are corroborated across different validation datasets.
- Abstract(参考訳): ディーゼル圧縮点火エンジンからの窒素酸化物(NOx)排出の厳密な規制要件は、リアルタイムのモニタリングと診断のために正確で信頼性の高いモデルを必要とする。
物理センサや仮想エンジン制御モジュール(ECM)のような従来の手法は、重要なデータを提供するが、それらは推定にのみ使用される。
ユビキタス文学は主に決定論的モデルに焦点を当てており、センサによる不確実性を捉えることにはほとんど重点を置いていない。
確率的フレームワークの欠如は、堅牢な診断のためのこれらのモデルの適用性を制限している。
本研究の目的は,ガウス過程回帰を用いたNOx排出予測モデルの開発と検証である。
私たちのアプローチは以下の通りです。
入力ウィンドウを持つ標準ラジアル基底関数カーネルを持つ第1、時間的依存を捉えるために畳み込みニューラルネットワークを使用するディープカーネルを組み込んだ第2、グラフ畳み込みネットワークによって導出される因果グラフでディープカーネルを豊かにする第3の3つのガウスプロセスモデルを用いている。
因果グラフは、物理知識を学習プロセスに埋め込む。
すべてのモデルは、定量と定性の両方のメトリクスを使用して、仮想ECMセンサーと比較される。
入力ウィンドウとディープカーネル構造を用いる場合,本モデルにより予測性能が向上する。
さらに魅力的なのは、深いカーネルに因果グラフを組み込むことによって達成されるさらなる拡張である。
これらの結果は、さまざまな検証データセット間で相関している。
関連論文リスト
- Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
本研究では,ポンプ,圧縮機,ファン,その他の産業機械で使用される誘導電動機の異常検出システムについて紹介する。
我々は、計算コストの低い前処理技術と機械学習(ML)モデルの組み合わせを用いる。
論文 参考訳(メタデータ) (2023-10-15T18:43:45Z) - Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective [0.7373617024876725]
カーネル密度推定(KDE)に基づくモデルは、このタスクの一般的な選択であるが、密度の異なるデータ領域に適応できない。
適応的なKDEモデルを用いてこれを回避し、モデル内の各カーネルは個別の帯域幅を持つ。
最適化速度を確実に高速化するために改良された期待最大化アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-10-05T14:08:42Z) - Physics-informed neural networks for predicting gas flow dynamics and
unknown parameters in diesel engines [0.0]
目的は、エンジンのダイナミクスを評価し、未知のパラメータを"平均値"モデルで識別し、メンテナンス要件を予測することである。
PINNモデルは可変形状ターボチャージャーと排気ガス再循環を備えたディーゼルエンジンに適用される。
本研究は、PINNモデルに加え、ディープニューラルネットワーク(DNN)の利用を検討する。
論文 参考訳(メタデータ) (2023-04-26T19:37:18Z) - Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems [17.373668215331737]
本稿では,異常検出のためのディープグラフベクトルデータ記述法(SVDD)を提案する。
まず、時間的埋め込みにおけるデータ監視の短絡パターンと長絡パターンの両方を保存するために、トランスフォーマーを使用します。
センサタイプに応じてこれらの埋め込みをクラスタリングし、各種センサ間の接続性の変化を推定し、新しい重み付きグラフを構築する。
論文 参考訳(メタデータ) (2023-02-24T22:14:39Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Online Graph Topology Learning from Matrix-valued Time Series [0.0]
焦点は、センサのネットワーク上でデータを収集する行列値時系列の統計解析である。
目標は、これらのセンサー間の依存関係構造を特定し、それをグラフで表現することだ。
オンラインアルゴリズムはこれらの拡張データモデルに適応しており、ストリーミングサンプルからグラフとトレンドを同時に学習することができる。
論文 参考訳(メタデータ) (2021-07-16T17:21:14Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。